Exemplo n.º 1
0
        public static float[] RunMatrixMul(float[][] a, float[][] b, int N)
        {
            //Create context and accelerator
            var gpu = new CudaAccelerator(new Context());

            //Create typed launcher
            var matrixMulKernel = gpu.LoadAutoGroupedStreamKernel <
                Index2,
                ArrayView <float>,
                ArrayView <float>,
                ArrayView <float>,
                int>(MatrixMul);

            //Allocate memory
            int buffSize             = N * N;
            MemoryBuffer <float> d_a = gpu.Allocate <float>(buffSize);
            MemoryBuffer <float> d_b = gpu.Allocate <float>(buffSize);
            MemoryBuffer <float> d_c = gpu.Allocate <float>(buffSize);

            d_a.CopyFrom(FlatternArr(a), 0, Index1.Zero, buffSize);
            d_b.CopyFrom(FlatternArr(b), 0, Index1.Zero, buffSize);

            matrixMulKernel(new Index2(N, N), d_a.View, d_b.View, d_c.View, N);

            // Wait for the kernel to finish...
            gpu.Synchronize();

            var c = d_c.GetAsArray();

            return(c);
        }
Exemplo n.º 2
0
        public override void Init()
        {
            GeneratePTX(); // alternative approach through this?

            context     = new Context();
            accelerator = new CudaAccelerator(context);

            var methodInfo = typeof(Impl_ILGPU).GetMethod(nameof(MyKernel), BindingFlags.Public | BindingFlags.Static);

            myKernel = accelerator.LoadAutoGroupedStreamKernel <Index,
                                                                ArrayView <byte>,
                                                                ArrayView <double>,
                                                                ArrayView <int>,
                                                                ArrayView <int>,
                                                                ArrayView <double>,
                                                                ArrayView <byte>,
                                                                int
                                                                >(MyKernel);

            // Allocate some memory
            input1_dev = accelerator.Allocate <int>(DataGenerator.In1.Length);
            input2_dev = accelerator.Allocate <int>(DataGenerator.In2.Length);
            input3_dev = accelerator.Allocate <double>(DataGenerator.In3.Length);
            input4_dev = accelerator.Allocate <byte>(DataGenerator.In4_3_bytes.Length);

            // init output parameters
            result_dev     = accelerator.Allocate <byte>(resultsBytes.Length);
            resultCalc_dev = accelerator.Allocate <double>(calculatables.Length);

            input1_dev.CopyFrom(DataGenerator.In1, 0, 0, DataGenerator.In1.Length);
            input2_dev.CopyFrom(DataGenerator.In2, 0, 0, DataGenerator.In2.Length);
            input3_dev.CopyFrom(DataGenerator.In3, 0, 0, DataGenerator.In3.Length);
            input4_dev.CopyFrom(DataGenerator.In4_3_bytes, 0, 0, DataGenerator.In4_3_bytes.Length);
        }
Exemplo n.º 3
0
        public static float[] RunOddEvenSort2(float[] a)
        {
            int  N       = a.Length;
            bool evenArr = (N % 2) == 0 ? true : false;

            //Create context and accelerator
            var gpu = new CudaAccelerator(new Context());

            //Create typed launcher
            var oddEvenKernel = gpu.LoadAutoGroupedStreamKernel <
                Index1,
                ArrayView <float>,
                VariableView <byte>,
                int,
                bool>(OddEvenSort2);

            //Allocate memory
            MemoryBuffer <float> d_a        = gpu.Allocate <float>(N);
            MemoryBuffer <byte>  d_stopFlag = gpu.AllocateZero <byte>(1);

            d_a.CopyFrom(a, 0, Index1.Zero, N);

            //Run kernel
            oddEvenKernel(N / 2, d_a, d_stopFlag.View.GetVariableView(0), N, evenArr);
            gpu.Synchronize();

            return(d_a.GetAsArray());
        }
Exemplo n.º 4
0
        public static float[] RunFloydWarshall(float[][] a, int N, ref Stopwatch sw)
        {
            //Create context and accelerator
            var gpu = new CudaAccelerator(new Context());

            //Create typed launcher
            var floydWarshallKernel = gpu.LoadAutoGroupedStreamKernel <
                Index1,
                int,
                ArrayView <float>,
                int>(FloydWarshall);

            //Allocate memory
            var bufSize = N * N;
            MemoryBuffer <float> d_graphMinDist = gpu.Allocate <float>(bufSize);

            d_graphMinDist.CopyFrom(FlatternArr(a), 0, Index1.Zero, bufSize);

            sw.Restart();

            for (int k = 0; k < N; k++)
            {
                floydWarshallKernel(bufSize, k, d_graphMinDist, N);
                gpu.Synchronize();
            }

            sw.Stop();

            return(d_graphMinDist.GetAsArray());
        }
Exemplo n.º 5
0
    public static void Main()
    {
        using Context context = new Context();
        context.EnableAlgorithms();
        using Accelerator device = new CudaAccelerator(context);

        int width  = 1920;
        int height = 1080;

        byte[] h_bitmapData = new byte[width * height * 3];

        using MemoryBuffer2D <Vec3> canvasData = device.Allocate <Vec3>(width, height);
        using MemoryBuffer <byte> d_bitmapData = device.Allocate <byte>(width * height * 3);

        CanvasData c = new CanvasData(canvasData, d_bitmapData, width, height);
        // pos              // look at         // up
        Camera camera = new Camera(new Vec3(0, 50, -100), new Vec3(0, 0, 0), new Vec3(0, -1, 0), width, height, 40f);

        WorldData world = new WorldData(device);

        //world.loadMesh(new Vec3(10, 0, 0), "./Assets/defaultcube.obj");
        world.loadMesh(new Vec3(0, 0, 0), "./Assets/cat.obj");

        var frameBufferToBitmap = device.LoadAutoGroupedStreamKernel <Index2, CanvasData>(CanvasData.CanvasToBitmap);
        var RTMethod            = device.LoadAutoGroupedStreamKernel <Index2, CanvasData, dWorldBuffer, Camera>(PerPixelRayIntersectionMethod);

        //do rasterization here

        Stopwatch timer = new Stopwatch();

        timer.Start();

        RTMethod(new Index2(width, height), c, world.getDeviceWorldBuffer(), camera);
        frameBufferToBitmap(canvasData.Extent, c);
        device.Synchronize();

        d_bitmapData.CopyTo(h_bitmapData, 0, 0, d_bitmapData.Extent);

        timer.Stop();
        Console.WriteLine("Rendered in: " + timer.Elapsed);

        //bitmap magic that ignores striding be careful with some
        using Bitmap b = new Bitmap(width, height, width * 3, PixelFormat.Format24bppRgb, Marshal.UnsafeAddrOfPinnedArrayElement(h_bitmapData, 0));
        b.Save("out.bmp");

        Process.Start("cmd.exe", "/c out.bmp");
    }
Exemplo n.º 6
0
        public static float[] RunOddEvenSort(float[] a, ref Stopwatch sw)
        {
            int  N       = a.Length;
            bool evenArr = (N % 2) == 0 ? true : false;

            bool stopFlag      = false;
            bool iterationEven = true;

            //Create context and accelerator
            var gpu = new CudaAccelerator(new Context());

            //Create typed launcher
            var oddEvenKernel = gpu.LoadAutoGroupedStreamKernel <
                Index1,
                ArrayView <float>,
                VariableView <byte>,
                bool,
                int,
                bool>(OddEvenSort);

            //Allocate memory
            MemoryBuffer <float> d_a        = gpu.Allocate <float>(N);
            MemoryBuffer <byte>  d_stopFlag = gpu.AllocateZero <byte>(1);

            d_a.CopyFrom(a, 0, Index1.Zero, N);

            sw.Restart();
            //Run kernel
            byte[] zero_val = new byte[1];
            zero_val[0] = 0;

            while (true)
            {
                if (stopFlag)
                {
                    break;
                }
                stopFlag = true;

                d_stopFlag.CopyFrom(zero_val, 0, 0, 1);
                oddEvenKernel(N / 2, d_a, d_stopFlag.View.GetVariableView(), iterationEven, N, evenArr);
                gpu.Synchronize();
                if (d_stopFlag.GetAsArray()[0] > 0)
                {
                    stopFlag = false;
                }

                iterationEven = !iterationEven;
            }
            sw.Stop();

            return(d_a.GetAsArray());
        }
Exemplo n.º 7
0
        /// <summary>
        /// Demonstrates a block statement, with local register declaration.
        /// </summary>
        static void AddUsingTempRegister(CudaAccelerator accelerator)
        {
            using var buffer = accelerator.Allocate1D <double>(1024);
            var kernel = accelerator.LoadAutoGroupedStreamKernel <Index1D, ArrayView <double> >(MultipleInstructionKernel);

            kernel((int)buffer.Length, buffer.View);

            var results = buffer.GetAsArray1D();

            for (var i = 0; i < results.Length; i++)
            {
                Console.WriteLine($"[{i}] = {results[i]}");
            }
        }
Exemplo n.º 8
0
        /// <summary>
        /// Demonstrates using EmitRef.
        /// </summary>
        static void SubtractUsingEmitRef(CudaAccelerator accelerator)
        {
            using var buffer = accelerator.Allocate1D <long>(32);
            var kernel = accelerator.LoadAutoGroupedStreamKernel <Index1D, ArrayView <long> >(SubtractEmitRefKernel);

            kernel((int)buffer.Length, buffer.View);

            var results = buffer.GetAsArray1D();

            for (var i = 0; i < results.Length; i++)
            {
                Console.WriteLine($"[{i}] = {results[i]}");
            }
        }
Exemplo n.º 9
0
        /// <summary>
        /// Demonstrates using the mul.hi.u64 and mul.lo.u64 inline PTX instructions to
        /// multiply two UInt64 values to produce a UInt128 value.
        /// </summary>
        static void MultiplyUInt128(CudaAccelerator accelerator)
        {
            using var buffer = accelerator.Allocate1D <UInt128>(1024);
            var kernel = accelerator.LoadAutoGroupedStreamKernel <Index1D, ArrayView <UInt128>, SpecializedValue <ulong> >(MultiplyUInt128Kernel);

            kernel(
                (int)buffer.Length,
                buffer.View,
                SpecializedValue.New(ulong.MaxValue));

            var results = buffer.GetAsArray1D();

            for (var i = 0; i < results.Length; i++)
            {
                Console.WriteLine($"[{i}] = {results[i]}");
            }
        }
Exemplo n.º 10
0
        private static void Performance()
        {
            using (var context = new Context())
            {
                using (var accelerator = new CudaAccelerator(context))
                {
                    using (var b = accelerator.CreateBackend())
                    {
                        using (var c = accelerator.Context.CreateCompileUnit(b))
                        {
                            var method = typeof(Program).GetMethod("MathKernel", BindingFlags.Static | BindingFlags.Public);
                            var compiled = b.Compile(c, method);

                            var kernel = accelerator.LoadAutoGroupedStreamKernel<Index2, ArrayView2D<float>>(MathKernel);
                            //var kernel = accelerator.LoadAutoGroupedKernel(compiled);

                            int size = 100000;
                            var W = new[] { 50 };
                            var H = new[] { 50 };

                            for (int n = 0; n < W.Length; n++)
                            {
                                for (int m = 0; m < H.Length; m++)
                                {
                                    int x = W[n];
                                    int y = H[m];

                                    Console.WriteLine($"\n\nW {x}, H {y} \n\n");

                                    //var watch = Stopwatch.StartNew();
                                    //for (int k = 0; k < size; k++)
                                    //{
                                    //    var v = new float[x, y];
                                    //    for (int i = 0; i < x; i++)
                                    //    {
                                    //        for (int j = 0; j < y; j++)
                                    //        {
                                    //            v[i, j] = (float)Math.Sqrt(i * j);
                                    //        }
                                    //    }
                                    //}
                                    //watch.Stop();
                                    //Console.WriteLine($"\n\nElapsed CPU Time Linear: {watch.ElapsedMilliseconds}ms\n");
                                    //GC.Collect();
                                    //
                                    //watch = Stopwatch.StartNew();
                                    //Parallel.For(0, size, k =>
                                    //{
                                    //    var v = new float[x, y];
                                    //    Parallel.For(0, x, i =>
                                    //    {
                                    //        Parallel.For(0, y, j =>
                                    //        {
                                    //            v[i, j] = (float)Math.Sqrt(i * j);
                                    //        });
                                    //    });
                                    //});
                                    //watch.Stop();
                                    //Console.WriteLine($"Elapsed CPU Time Parallel: {watch.ElapsedMilliseconds}ms\n\n");
                                    //GC.Collect();

                                    //var watch = Stopwatch.StartNew();
                                    //for (int k = 0; k < size; k++)
                                    //{
                                    //    var idx = new Index2(x, y);
                                    //    var buffer = accelerator.Allocate<float>(idx);
                                    //    kernel(idx, buffer.View);
                                    //    accelerator.Synchronize();
                                    //    buffer.Dispose();
                                    //}
                                    //watch.Stop();
                                    //Console.WriteLine($"\n\nElapsed GPU Time Linear: {watch.ElapsedMilliseconds}ms\n");
                                    //GC.Collect();

                                    var kn = Enumerable.Repeat(accelerator.LoadAutoGroupedStreamKernel<Index2, ArrayView2D<float>>(MathKernel), size).ToList();

                                    var watch = Stopwatch.StartNew();
                                    Parallel.For(0, size, k =>
                                    {
                                        var idx = new Index2(x, y);
                                        var buffer = accelerator.Allocate<float>(idx);
                                        //kn[k](idx, buffer.View);
                                        //kernel.Launch(idx, buffer.View);
                                        kernel(idx, buffer.View);
                                        accelerator.Synchronize();
                                        buffer.Dispose();
                                    });
                                    watch.Stop();
                                    Console.WriteLine($"Elapsed GPU Time Parallel: {watch.ElapsedMilliseconds}ms\n\n");
                                    GC.Collect();
                                }
                            }
                        }
                    }
                }
            }
        }
Exemplo n.º 11
0
        public void ProccessOld()
        {
            // Create the required ILGPU context
            using (var context = new Context())
            {
                /*
                 * using (var accelerator = new CPUAccelerator(context))
                 * {
                 *  // accelerator.LoadAutoGroupedStreamKernel creates a typed launcher
                 *  // that implicitly uses the default accelerator stream.
                 *  // In order to create a launcher that receives a custom accelerator stream
                 *  // use: accelerator.LoadAutoGroupedKernel<Index, ArrayView<int> int>(...)
                 *  var myKernel = accelerator.LoadAutoGroupedStreamKernel<Index, ArrayView<int>, int>(MyKernel2);
                 *
                 *  // Allocate some memory
                 *  using (var buffer = accelerator.Allocate<int>(1024))
                 *  {
                 *      // Launch buffer.Length many threads and pass a view to buffer
                 *      myKernel(buffer.Length, buffer.View, 42);
                 *
                 *      // Wait for the kernel to finish...
                 *      accelerator.Synchronize();
                 *
                 *      // Resolve data
                 *      var data = buffer.GetAsArray();
                 *      // ...
                 *  }
                 * }*/

                using (var accelerator = new CudaAccelerator(context)) // test with CPUAccelerator
                {
                    var methodInfo = typeof(Impl_ILGPU).GetMethod(nameof(MyKernel), BindingFlags.Public | BindingFlags.Static);
                    var myKernel   = accelerator.LoadAutoGroupedStreamKernel <Index,
                                                                              ArrayView <byte>,
                                                                              ArrayView <double>,
                                                                              ArrayView <int>,
                                                                              ArrayView <int>,
                                                                              ArrayView <double>,
                                                                              ArrayView <byte>,
                                                                              int
                                                                              >(MyKernel);

                    /*
                     * var myKernel = accelerator.LoadAutoGroupedStreamKernel<Action<Index,
                     *      ArrayView<byte>,
                     *      ArrayView<int>,
                     *      ArrayView<int>,
                     *      ArrayView<double>,
                     *      ArrayView2D<byte>>>(methodInfo);*/

                    // Allocate some memory
                    var input1_dev = accelerator.Allocate <int>(DataGenerator.In1.Length);
                    var input2_dev = accelerator.Allocate <int>(DataGenerator.In2.Length);
                    var input3_dev = accelerator.Allocate <double>(DataGenerator.In3.Length);
                    //var input4_dev = accelerator.Allocate<byte>(DataGenerator.In4_2.GetLength(0), DataGenerator.In4_2.GetLength(1));
                    var input4_dev = accelerator.Allocate <byte>(DataGenerator.In4_3_bytes.Length);

                    // init output parameters
                    var result_dev     = accelerator.Allocate <byte>(resultsBytes.Length);
                    var resultCalc_dev = accelerator.Allocate <double>(calculatables.Length);

                    input1_dev.CopyFrom(DataGenerator.In1, 0, 0, DataGenerator.In1.Length);
                    input2_dev.CopyFrom(DataGenerator.In2, 0, 0, DataGenerator.In2.Length);
                    input3_dev.CopyFrom(DataGenerator.In3, 0, 0, DataGenerator.In3.Length);
                    //input4_dev.CopyFrom(DataFeeder.In4_2_bytes, new Index2(), new Index2(DataFeeder.In4_2_bytes.GetLength(0), 0), new Index2(1, 2));
                    //input4_dev.CopyFrom(DataGenerator.In4_2_bytes, Index2.Zero, Index2.Zero, input4_dev.Extent);
                    input4_dev.CopyFrom(DataGenerator.In4_3_bytes, 0, 0, DataGenerator.In4_3_bytes.Length);

                    myKernel(input1_dev.Length, result_dev.View, resultCalc_dev.View, input1_dev.View, input2_dev.View, input3_dev.View, input4_dev.View, DataGenerator.Width);

                    // Wait for the kernel to finish...
                    accelerator.Synchronize();

                    // Resolve data
                    resultsBytes  = result_dev.GetAsArray();
                    calculatables = resultCalc_dev.GetAsArray();

                    //d_in1.Dispose();
                    //d_in1 = null;

                    /*
                     * var kernelWithDefaultStream = accelerator.LoadAutoGroupedStreamKernel<
                     *  Index,
                     *  ArrayView<bool>,
                     *  ArrayView<int>,
                     *  ArrayView<int>,
                     *  ArrayView<double>,
                     *  ArrayView2D<bool>
                     *  >(MyKernel);
                     *
                     * kernelWithDefaultStream(buffer.Extent, buffer.View, 1);
                     */

                    // Launch buffer.Length many threads and pass a view to buffer
                    //myKernel(d_in1.Length, d_in1.View, 42);

                    // Wait for the kernel to finish...
                    //accelerator.Synchronize();

                    // Resolve data
                    //var data = buffer.GetAsArray();
                    // ...
                }
            }
        }