Exemplo n.º 1
0
        public void Calculate_FileWithDuplicates_ReturnsCorrectKendall()
        {
            // Create lists to feed into test
            IEnumerable <decimal> listA = new List <decimal>();
            IEnumerable <decimal> listB = new List <decimal>();

            for (int i = 1; i <= 10; i++)
            {
                listA = listA.Append(i);
                listB = listB.Append(11 - i);
            }

            // Add some duplicated numbers to the list
            listA = listA.Append(2);
            listB = listB.Append(5);

            listA = listA.Append(7);
            listB = listB.Append(3);

            listA = listA.Append(1);
            listB = listB.Append(11);

            listA = listA.Append(11);
            listB = listB.Append(6);

            // Calculate using CorrelationCalculator
            Correlations.Calculate("A", listA.ToList(), "B", listB.ToList());

            // Use Extreme.Statistics Kendall method to test result against
            double kendallActual = Stats.KendallTau(listA.ToList(), listB.ToList());

            // Check answer
            Assert.AreEqual(Math.Round(kendallActual, numberOfDpAccuracy), Math.Round((double)Correlations.kendall, numberOfDpAccuracy));
        }
Exemplo n.º 2
0
        public void Calculate_RandomFile_ReturnsCorrectKendall()
        {
            // Create random lists to feed into test
            IEnumerable <decimal> listA = CreateRandomList(numberOfDataPoints);
            IEnumerable <decimal> listB = CreateRandomList(numberOfDataPoints);

            // Use Extreme.Statistics Kendall method to test result against
            double kendallActual = Stats.KendallTau(listA.ToList(), listB.ToList());

            // Calculate using CorrelationCalculator
            Correlations.Calculate("A", listA.ToList(), "B", listB.ToList());

            // Check answer
            Assert.AreEqual(Math.Round(kendallActual, numberOfDpAccuracy), Math.Round((double)Correlations.kendall, numberOfDpAccuracy));
        }
Exemplo n.º 3
0
        public void Calculate_PerfectlyCorrelatedFile_ReturnsCorrectSpearman()
        {
            // Create lists to feed into test
            IEnumerable <decimal> listA = new List <decimal>();
            IEnumerable <decimal> listB = new List <decimal>();

            for (int i = 1; i <= 10; i++)
            {
                listA = listA.Append(i);
                listB = listB.Append(i);
            }

            // Calculate using CorrelationCalculator
            Correlations.Calculate("A", listA.ToList(), "B", listB.ToList());

            // Check answer
            Assert.AreEqual(1, Math.Round((double)Correlations.spearman, numberOfDpAccuracy));
        }
Exemplo n.º 4
0
        public void Calculate_RandomFile_ReturnsCorrectSpearman()
        {
            // Create random lists to feed into test
            IEnumerable <decimal> listA = CreateRandomList(numberOfDataPoints);
            IEnumerable <decimal> listB = CreateRandomList(numberOfDataPoints);

            double[] arrayA = listA.Select(dec => (double)dec).ToArray();
            double[] arrayB = listB.Select(dec => (double)dec).ToArray();

            // Use Extreme.Statistics RankCorrelation method to test result against
            double spearmanActual = Stats.RankCorrelation(arrayA, arrayB);

            // Calculate using CorrelationCalculator
            Correlations.Calculate("A", listA.ToList(), "B", listB.ToList());

            // Check answer
            Assert.AreEqual(Math.Round(spearmanActual, numberOfDpAccuracy), Math.Round((double)Correlations.spearman, numberOfDpAccuracy));
        }