Exemplo n.º 1
0
		private bool GenerateSphere(float radius, int splits, CSGModel parentModel, CSGBrush brush, out ControlMesh controlMesh, out Shape shape)
        {
			if (prevSplits != splits || prevIsHemisphere != IsHemiSphere || splitControlMesh == null || splitShape == null)
			{
				splitControlMesh = null;
				splitShape = null;
				BrushFactory.CreateCubeControlMesh(out splitControlMesh, out splitShape, Vector3.one);

				var axi = new Vector3[] { MathConstants.upVector3, MathConstants.leftVector3, MathConstants.forwardVector3 };
				List<int> intersectedEdges = new List<int>();
				float step = 1.0f / (float)(splits + 1);
				float offset;
				for (int i = 0; i < axi.Length; i++)
				{
					var normal = axi[i];
					offset = 0.5f - step;
					while (offset > 0.0f)
					{
						ControlMeshUtility.CutMesh(splitControlMesh, splitShape, new CSGPlane(-normal, -offset), ref intersectedEdges);
						if (i != 0 || !IsHemiSphere)
						{
							ControlMeshUtility.CutMesh(splitControlMesh, splitShape, new CSGPlane(normal, -offset), ref intersectedEdges);
						}
						offset -= step;
					}
					if (i != 0 || !IsHemiSphere)
					{
						if ((splits & 1) == 1)
							ControlMeshUtility.CutMesh(splitControlMesh, splitShape, new CSGPlane(normal, 0), ref intersectedEdges);
					}
				}

				if (IsHemiSphere)
				{
					var cuttingPlane = new CSGPlane(MathConstants.upVector3, 0);
					intersectedEdges.Clear();
					if (ControlMeshUtility.CutMesh(splitControlMesh, splitShape, cuttingPlane, ref intersectedEdges))
					{
						var edge_loop = ControlMeshUtility.FindEdgeLoop(splitControlMesh, ref intersectedEdges);
						if (edge_loop != null)
						{
							if (ControlMeshUtility.SplitEdgeLoop(splitControlMesh, splitShape, edge_loop))
							{
								Shape foundShape;
								ControlMesh foundControlMesh;
								ControlMeshUtility.FindAndDetachSeparatePiece(splitControlMesh, splitShape, cuttingPlane, out foundControlMesh, out foundShape);
							}
						}
					}
				}


				// Spherize the cube
				for (int i = 0; i < splitControlMesh.Vertices.Length; i++)
				{
					Vector3 v = splitControlMesh.Vertices[i] * 2.0f;
					float x2 = v.x * v.x;
					float y2 = v.y * v.y;
					float z2 = v.z * v.z;
					Vector3 s;
					s.x = v.x * Mathf.Sqrt(1f - (y2 * 0.5f) - (z2 * 0.5f) + ((y2 * z2) / 3.0f));
					s.y = v.y * Mathf.Sqrt(1f - (z2 * 0.5f) - (x2 * 0.5f) + ((z2 * x2) / 3.0f));
					s.z = v.z * Mathf.Sqrt(1f - (x2 * 0.5f) - (y2 * 0.5f) + ((x2 * y2) / 3.0f));
					splitControlMesh.Vertices[i] = s;//(splitControlMesh.Vertices[i] * 0.75f) + (splitControlMesh.Vertices[i].normalized * 0.25f);
				}


				if (!ControlMeshUtility.Triangulate(null, splitControlMesh, splitShape))
				{
					Debug.LogWarning("!ControlMeshUtility.IsConvex");
					controlMesh = null;
					shape = null;
					return false;
				}
				ControlMeshUtility.FixTexGens(splitControlMesh, splitShape);

				if (!ControlMeshUtility.IsConvex(splitControlMesh, splitShape))
				{
					Debug.LogWarning("!ControlMeshUtility.IsConvex");
					controlMesh = null;
					shape = null;
					return false;
				}
				ControlMeshUtility.UpdateTangents(splitControlMesh, splitShape);

				prevSplits = splits;
				prevIsHemisphere = IsHemiSphere;
			}

			if (splitControlMesh == null || splitShape == null || !splitControlMesh.Valid)
			{
				Debug.LogWarning("splitControlMesh == null || splitShape == null || !splitControlMesh.IsValid");
				controlMesh = null;
				shape = null;
				return false;
			}

			controlMesh = splitControlMesh.Clone();
			shape = splitShape.Clone();

			/*
			float angle_offset = GeometryUtility.SignedAngle(gridTangent, delta / sphereRadius, buildPlane.normal);
			angle_offset -= 90;

			angle_offset += sphereOffset;
			angle_offset *= Mathf.Deg2Rad;

			Vector3 p1 = MathConstants.zeroVector3;
			for (int i = 0; i < realSplits; i++)
			{
				var angle = ((i * Mathf.PI * 2.0f) / (float)realSplits) + angle_offset;

				p1.x = (Mathf.Sin(angle) * sphereRadius);
				p1.z = (Mathf.Cos(angle) * sphereRadius);
			}
			*/

			for (int i = 0; i < controlMesh.Vertices.Length; i++)
			{
				var vertex = controlMesh.Vertices[i];
				vertex *= radius;
				controlMesh.Vertices[i] = vertex;
			}

			for (int i = 0; i < shape.Surfaces.Length; i++)
			{
				var plane = shape.Surfaces[i].Plane;
				plane.d *= radius;
				shape.Surfaces[i].Plane = plane;
			}

			bool smoothShading = SphereSmoothShading;
			if (!sphereSmoothingGroup.HasValue && smoothShading)
			{
				sphereSmoothingGroup = SurfaceUtility.FindUnusedSmoothingGroupIndex();
			}

			for (int i = 0; i < shape.TexGenFlags.Length; i++)
			{
				shape.TexGens[i].SmoothingGroup = smoothShading ? sphereSmoothingGroup.Value : 0;
			}

			var defaultTexGen = new TexGen();
			defaultTexGen.Scale = MathConstants.oneVector3;
			//defaultTexGen.Color = Color.white;
			
			var fakeSurface = new Surface();
			fakeSurface.TexGenIndex = 0;
			
			var defaultMaterial = CSGSettings.DefaultMaterial;
			for (var s = 0; s < shape.Surfaces.Length; s++)
			{
				var texGenIndex = shape.Surfaces[s].TexGenIndex;

				var axis		= GeometryUtility.SnapToClosestAxis(shape.Surfaces[s].Plane.normal);
				var rotation	= Quaternion.FromToRotation(axis, MathConstants.backVector3);
				var matrix		= Matrix4x4.TRS(MathConstants.zeroVector3, rotation, MathConstants.oneVector3);

				SurfaceUtility.AlignTextureSpaces(matrix, false, ref shape.TexGens[texGenIndex], ref shape.TexGenFlags[texGenIndex], ref shape.Surfaces[s]);
				shape.TexGens[texGenIndex].RenderMaterial = defaultMaterial;
			}

			return true;
        }