Exemplo n.º 1
0
        /// <summary>
        /// Checks whether the boolean selection is valid w.r.t. the variability model. Does not check for numeric options' correctness.
        /// </summary>
        /// <param name="config">The list of binary options that are SELECTED (only selected options must occur in the list).</param>
        /// <param name="vm">The variability model that represents the context of the configuration.</param>
        /// <param name="partialConfiguration">Whether the given list of options represents only a partial configuration. This means that options not in config might be additionally select to obtain a valid configuration.</param>
        /// <returns>True if it is a valid selection w.r.t. the VM, false otherwise</returns>
        public bool checkConfigurationSAT(List <BinaryOption> config, VariabilityModel vm, bool partialConfiguration)
        {
            List <CspTerm> variables = new List <CspTerm>();
            Dictionary <BinaryOption, CspTerm> elemToTerm = new Dictionary <BinaryOption, CspTerm>();
            Dictionary <CspTerm, BinaryOption> termToElem = new Dictionary <CspTerm, BinaryOption>();
            ConstraintSystem S = CSPsolver.getConstraintSystem(out variables, out elemToTerm, out termToElem, vm);

            //Feature Selection
            foreach (BinaryOption binayOpt in elemToTerm.Keys)
            {
                CspTerm term = elemToTerm[binayOpt];
                if (config.Contains(binayOpt))
                {
                    S.AddConstraints(S.Implies(S.True, term));
                }
                else if (!partialConfiguration)
                {
                    S.AddConstraints(S.Implies(S.True, S.Not(term)));
                }
            }

            ConstraintSolverSolution sol = S.Solve();

            if (sol.HasFoundSolution)
            {
                return(true);
            }
            else
            {
                return(false);
            }
        }
Exemplo n.º 2
0
        public void Solve(int?[,] field)
        {
            ConstraintSystem S = ConstraintSystem.CreateSolver();
            CspDomain        Z = S.CreateIntegerInterval(1, 9);

            CspTerm[][] sudoku = S.CreateVariableArray(Z, "cell", 9, 9);
            for (int row = 0; row < 9; row++)
            {
                for (int col = 0; col < 9; col++)
                {
                    if (field[row, col] > 0)
                    {
                        S.AddConstraints(S.Equal(field[row, col] ?? 0, sudoku[row][col]));
                    }
                }
                S.AddConstraints(S.Unequal(GetSlice(sudoku, row, row, 0, 8)));
            }
            for (int col = 0; col < 9; col++)
            {
                S.AddConstraints(S.Unequal(GetSlice(sudoku, 0, 8, col, col)));
            }
            for (int a = 0; a < 3; a++)
            {
                for (int b = 0; b < 3; b++)
                {
                    S.AddConstraints(S.Unequal(GetSlice(sudoku, a * 3, a * 3 + 2, b * 3, b * 3 + 2)));
                }
            }
            ConstraintSolverSolution soln = S.Solve();

            if (!soln.HasFoundSolution)
            {
                throw new NoSolutionException("Для поставленной цифры нет решение!");
            }


            object[] h = new object[9];
            for (int row = 0; row < 9; row++)
            {
                if ((row % 3) == 0)
                {
                    System.Console.WriteLine();
                }
                for (int col = 0; col < 9; col++)
                {
                    soln.TryGetValue(sudoku[row][col], out h[col]);
                }
                System.Console.WriteLine("{0}{1}{2} {3}{4}{5} {6}{7}{8}", h[0], h[1], h[2], h[3], h[4], h[5], h[6], h[7], h[8]);
            }
        }
Exemplo n.º 3
0
        /// <summary>
        /// Checks whether the boolean selection is valid w.r.t. the variability model. Does not check for numeric options' correctness.
        /// </summary>
        /// <param name="config">The list of binary options that are SELECTED (only selected options must occur in the list).</param>
        /// <param name="vm">The variability model that represents the context of the configuration.</param>
        /// <param name="exact">Checks also the number of selected options such that it returns only true if exactly the given configuration is valid
        /// (e.g., if we need to select more features to get a valid config, it returns false if exact is set to true).
        /// <returns>True if it is a valid selection w.r.t. the VM, false otherwise</returns>
        public bool checkConfigurationSAT(List <BinaryOption> config, VariabilityModel vm, bool exact)
        {
            List <CspTerm> variables = new List <CspTerm>();
            Dictionary <BinaryOption, CspTerm> elemToTerm = new Dictionary <BinaryOption, CspTerm>();
            Dictionary <CspTerm, BinaryOption> termToElem = new Dictionary <CspTerm, BinaryOption>();
            ConstraintSystem S = CSPsolver.getConstraintSystem(out variables, out elemToTerm, out termToElem, vm);

            //Feature Selection
            foreach (BinaryOption binayOpt in elemToTerm.Keys)
            {
                CspTerm term = elemToTerm[binayOpt];
                if (config.Contains(binayOpt))
                {
                    S.AddConstraints(S.Implies(S.True, term));
                }
                else
                {
                    if (exact)
                    {
                        S.AddConstraints(S.Implies(S.True, S.Not(term)));
                    }
                }
            }

            ConstraintSolverSolution sol = S.Solve();

            if (sol.HasFoundSolution)
            {
                int count = 0;
                foreach (CspTerm cT in variables)
                {
                    if (sol.GetIntegerValue(cT) == 1)
                    {
                        count++;
                    }
                }
                //Needs testing TODO
                if (count != config.Count && exact == true)
                {
                    return(false);
                }
                return(true);
            }
            else
            {
                return(false);
            }
        }
        private void AddBinaryConfigurationsToConstraintSystem(VariabilityModel vm, ConstraintSystem s, Configuration configurationToExclude, Dictionary <BinaryOption, CspTerm> elemToTerm)
        {
            List <BinaryOption> allBinaryOptions = vm.BinaryOptions;

            List <CspTerm> positiveTerms = new List <CspTerm>();
            List <CspTerm> negativeTerms = new List <CspTerm>();

            foreach (BinaryOption binOpt in allBinaryOptions)
            {
                if (configurationToExclude.BinaryOptions.ContainsKey(binOpt) && configurationToExclude.BinaryOptions[binOpt] == BinaryOption.BinaryValue.Selected)
                {
                    positiveTerms.Add(elemToTerm[binOpt]);
                }
                else
                {
                    negativeTerms.Add(elemToTerm[binOpt]);
                }
            }

            if (negativeTerms.Count > 0)
            {
                positiveTerms.Add(s.Not(s.And(negativeTerms.ToArray())));
            }

            s.AddConstraints(s.Not(s.And(positiveTerms.ToArray())));
        }
        /// <summary>
        ///  The method aims at finding a configuration which is similar to the given configuration, but does not contain the optionToBeRemoved. If further options need to be removed from the given configuration, they are outputed in removedElements.
        /// Idea: Encode this as a CSP problem. We aim at finding a configuration that maximizes a goal. Each option of the given configuration gets a large value assigned. All other options of the variability model gets a negative value assigned.
        /// We will further create a boolean constraint that forbids selecting the optionToBeRemoved. Now, we find an optimal valid configuration.
        /// </summary>
        /// <param name="optionToBeRemoved">The binary configuration option that must not be part of the new configuration.</param>
        /// <param name="originalConfig">The configuration for which we want to find a similar one.</param>
        /// <param name="removedElements">If further options need to be removed from the given configuration to build a valid configuration, they are outputed in this list.</param>
        /// <param name="vm">The variability model containing all options and their constraints.</param>
        /// <returns>A configuration that is valid, similar to the original configuration and does not contain the optionToBeRemoved.</returns>
        public List <BinaryOption> GenerateConfigWithoutOption(BinaryOption optionToBeRemoved, List <BinaryOption> originalConfig, out List <BinaryOption> removedElements, VariabilityModel vm)
        {
            List <CspTerm> variables = new List <CspTerm>();
            Dictionary <BinaryOption, CspTerm> elemToTerm = new Dictionary <BinaryOption, CspTerm>();
            Dictionary <CspTerm, BinaryOption> termToElem = new Dictionary <CspTerm, BinaryOption>();
            ConstraintSystem S = CSPsolver.getConstraintSystem(out variables, out elemToTerm, out termToElem, vm);

            removedElements = new List <BinaryOption>();

            //Forbid the selection of this configuration option
            CspTerm optionToRemove = elemToTerm[optionToBeRemoved];

            S.AddConstraints(S.Implies(S.True, S.Not(optionToRemove)));

            //Defining Goals
            CspTerm[] finalGoals = new CspTerm[variables.Count];
            int       r          = 0;

            foreach (var term in variables)
            {
                if (originalConfig.Contains(termToElem[term]))
                {
                    finalGoals[r] = term * -1000; //Since we minimize, we put a large negative value of an option that is within the original configuration to increase chances that the option gets selected again
                }
                else
                {
                    finalGoals[r] = variables[r] * 10000;//Positive number will lead to a small chance that an option gets selected when it is not in the original configuration
                }
                r++;
            }

            S.TryAddMinimizationGoals(S.Sum(finalGoals));

            ConstraintSolverSolution soln       = S.Solve();
            List <BinaryOption>      tempConfig = new List <BinaryOption>();

            if (soln.HasFoundSolution && soln.Quality == ConstraintSolverSolution.SolutionQuality.Optimal)
            {
                tempConfig.Clear();
                foreach (CspTerm cT in variables)
                {
                    if (soln.GetIntegerValue(cT) == 1)
                    {
                        tempConfig.Add(termToElem[cT]);
                    }
                }
                //Adding the options that have been removed from the original configuration
                foreach (var opt in originalConfig)
                {
                    if (!tempConfig.Contains(opt))
                    {
                        removedElements.Add(opt);
                    }
                }
                return(tempConfig);
            }

            return(null);
        }
Exemplo n.º 6
0
        CspTerm[][] CreateConstrainSystemMatrix(ConstraintSystem system)
        {
            var size   = HouseNumbers.Count;
            var matrix = system.CreateBooleanArray(new object(), size, size);

            Enumerable.Range(0, size).ToList().ForEach(i =>
            {
                var row    = system.CreateBooleanVector(new object(), size);
                var column = system.CreateBooleanVector(new object(), size);

                Enumerable.Range(0, size).ToList().ForEach(j =>
                {
                    row[j]    = matrix[i][j];
                    column[j] = matrix[j][i];
                });

                system.AddConstraints(system.Equal(1, system.Sum(row)));
                system.AddConstraints(system.Equal(1, system.Sum(column)));
            });

            return(matrix);
        }
Exemplo n.º 7
0
        public override void AddConstaint()
        {
            ConstraintSystem solver     = ConstraintSystemSolver.Instance.Solver;
            CspTerm          constraint = null;

            CspTerm inputTerm  = Input1.CspTerm;
            CspTerm outputTerm = Output.CspTerm;


            Type consType = type;

            if (IsNotHealthy)
            {
                // In case the gate is Broken (Not Healthy) - we don't want to add any constraint!!!
                return;

                /*
                 * switch (type)
                 * {
                 *  case Type.buffer:
                 *      consType = Type.not;
                 *      break;
                 *  case Type.not:
                 *      consType = Type.buffer;
                 *      break;
                 * }
                 */
            }

            lock (ConstraintSystemSolver.Instance.Locker)
            {
                //Debug.WriteLine("SAT IN!");
                switch (consType)
                {
                case Type.buffer:
                    constraint = solver.Equal(inputTerm, outputTerm);
                    break;

                case Type.not:
                    constraint = solver.Equal(inputTerm, solver.Not(outputTerm));
                    break;
                }

                solver.AddConstraints(constraint);
                //Debug.WriteLine("SAT OUT!");
            }
        }
Exemplo n.º 8
0
        static void Main(string[] args)
        {
            ConstraintSystem s1 = ConstraintSystem.CreateSolver();

            // () and ()
            CspTerm p1 = s1.CreateBoolean("p1");
            CspTerm p2 = s1.CreateBoolean("p2");
            CspTerm p3 = s1.CreateBoolean("p3");
            CspTerm p4 = s1.CreateBoolean("p4");

            var x = new CspDomain();

            CspTerm test = s1.And(s1.Or(p1, s1.And(s1.Neg(p3)), s1.Neg(p1)), s1.And(p2, s1.Neg(s1.Difference(p1, p2))));

            CspTerm tOr12 = s1.Or(s1.Neg(t1), s1.Neg(t2));
            CspTerm tOr13 = s1.Or(s1.Neg(t1), s1.Neg(t3));
            CspTerm tOr14 = s1.Or(s1.Neg(t1), s1.Neg(t4));

            CspTerm tOr23 = s1.Or(s1.Neg(t2), s1.Neg(t3));
            CspTerm tOr24 = s1.Or(s1.Neg(t2), s1.Neg(t4));

            CspTerm tOr34 = s1.Or(s1.Neg(t3), s1.Neg(t4));

            CspTerm tOr = s1.Or(t1, t2, t3, t4);

            s1.AddConstraints(tOr12);
            s1.AddConstraints(tOr13);
            s1.AddConstraints(tOr14);
            s1.AddConstraints(tOr23);
            s1.AddConstraints(tOr24);
            s1.AddConstraints(tOr34);
            s1.AddConstraints(tOr);

            ConstraintSolverSolution solution1 = s1.Solve();

            if (solution1.HasFoundSolution)
            {
                Console.WriteLine("Is Satisfiable");
            }
            else
            {
                Console.WriteLine("Not satisfiable");
            }

            Console.ReadKey();
        }
Exemplo n.º 9
0
        private List <List <BinaryOption> > generateTilSize(int i1, int size, int timeout, VariabilityModel vm)
        {
            var            foundSolutions = new List <List <BinaryOption> >();
            List <CspTerm> variables      = new List <CspTerm>();
            Dictionary <BinaryOption, CspTerm> elemToTerm = new Dictionary <BinaryOption, CspTerm>();
            Dictionary <CspTerm, BinaryOption> termToElem = new Dictionary <CspTerm, BinaryOption>();
            ConstraintSystem S = CSPsolver.getConstraintSystem(out variables, out elemToTerm, out termToElem, vm);

            CspTerm t = S.ExactlyMofN(i1, variables.ToArray());

            S.AddConstraints(new CspTerm[] { t });
            var csp = new ConstraintSolverParams
            {
                TimeLimitMilliSec = timeout * 1000,
            };
            ConstraintSolverSolution soln = S.Solve(csp);

            int counter = 0;

            while (soln.HasFoundSolution)
            {
                List <BinaryOption> tempConfig = (
                    from cT
                    in variables
                    where soln.GetIntegerValue(cT) == 1
                    select termToElem[cT]).ToList();

                if (tempConfig.Contains(null))
                {
                    tempConfig.Remove(null);
                }

                foundSolutions.Add(tempConfig);
                counter++;
                if (counter == size)
                {
                    break;
                }
                soln.GetNext();
            }
            //Console.WriteLine(i1 + "\t" + foundSolutions.Count);
            return(foundSolutions);
        }
Exemplo n.º 10
0
        /// <summary>
        /// Knapsack enumerator -- enumerate up to "numAnswers" combinations of "weights" such that the sum of the weights is less than the weight limit.
        /// It places the patterns of items inside the list of patterns.  The efficiency parameter ensures that we don't output any which use less than "efficiency" percent
        /// off the weightlimit.
        /// </summary>
        /// <param name="maxAnswers">maximum number of combinations to get out.  Limits runtime.  If zero return all.</param>
        /// <param name="weights">weight of each item to go into the knapsack</param>
        /// <param name="weightLimit">knapsack weight limit</param>
        /// <param name="efficiency">limit patterns to use at least this % of the weight limit (between 0.0 and 1.0) </param>
        /// <param name="patterns">output list of patterns of inclusion of the weights.</param>
        public static void SolveKnapsack(int maxAnswers, int[] weights, int weightLimit, double efficiency, out List <int[]> patterns)
        {
            // convenience value.
            int NumItems            = weights.Length;
            ConstraintSystem solver = ConstraintSystem.CreateSolver();
            CspDomain        dom    = solver.CreateIntegerInterval(0, weightLimit);

            CspTerm knapsackSize = solver.Constant(weightLimit);

            // these represent the quantity of each item.
            CspTerm[] itemQty     = solver.CreateVariableVector(dom, "Quantity", NumItems);
            CspTerm[] itemWeights = new CspTerm[NumItems];

            for (int cnt = 0; cnt < NumItems; cnt++)
            {
                itemWeights[cnt] = solver.Constant(weights[cnt]);
            }

            // contributors to the weight (weight * variable value)
            CspTerm[] contributors = new CspTerm[NumItems];
            for (int cnt = 0; cnt < NumItems; cnt++)
            {
                contributors[cnt] = itemWeights[cnt] * itemQty[cnt];
            }

            // single constraint
            CspTerm knapSackCapacity = solver.GreaterEqual(knapsackSize, solver.Sum(contributors));

            solver.AddConstraints(knapSackCapacity);

            // must be efficient
            CspTerm knapSackAtLeast = solver.LessEqual(knapsackSize * efficiency, solver.Sum(contributors));

            solver.AddConstraints(knapSackAtLeast);

            // start counter and allocate a list for the results.
            int nanswers = 0;

            patterns = new List <int[]>();

            ConstraintSolverSolution sol = solver.Solve();

            while (sol.HasFoundSolution)
            {
                int[] pattern = new int[NumItems];
                // extract this pattern from the enumeration.
                for (int cnt = 0; cnt < NumItems; cnt++)
                {
                    object val;
                    sol.TryGetValue(itemQty[cnt], out val);
                    pattern[cnt] = (int)val;
                }
                // add it to the output.
                patterns.Add(pattern);
                nanswers++;
                // stop if we reach the limit of results.
                if (maxAnswers > 0 && nanswers >= maxAnswers)
                {
                    break;
                }
                sol.GetNext();
            }
        }
Exemplo n.º 11
0
        public override void AddConstaint()
        {
            ConstraintSystem solver     = ConstraintSystemSolver.Instance.Solver;
            CspTerm          constraint = null;

            CspTerm[] inputTerms = new CspTerm[Input.Count];
            for (int i = 0; i < Input.Count; i++)
            {
                inputTerms[i] = Input[i].CspTerm;
            }

            CspTerm outputTerm = Output.CspTerm;

            Type consType = type;

            if (IsNotHealthy)
            {
                // In case the gate is Broken (Not Healthy) - we don't want to add any constraint!!!
                return;

                /*
                 * switch (type)
                 * {
                 *  case Type.and:
                 *      consType = Type.nand;
                 *      break;
                 *  case Type.nand:
                 *      consType = Type.and;
                 *      break;
                 *  case Type.or:
                 *      consType = Type.nor;
                 *      break;
                 *  case Type.nor:
                 *      consType = Type.or;
                 *      break;
                 *  case Type.xor:
                 *      consType = Type.nxor;
                 *      break;
                 *  case Type.nxor:
                 *      consType = Type.xor;
                 *      break;
                 * }
                 */
            }

            lock (ConstraintSystemSolver.Instance.Locker)
            {
                //Debug.WriteLine("SAT IN!");
                switch (consType)
                {
                case Type.and:
                    CspTerm allAndInputs = solver.And(inputTerms);
                    constraint = solver.Equal(allAndInputs, outputTerm);
                    break;

                case Type.nand:
                    CspTerm allNandInputs = solver.And(inputTerms);
                    constraint = solver.Equal(allNandInputs, solver.Not(outputTerm));
                    break;

                case Type.nor:
                    CspTerm allNorInputs = solver.Or(inputTerms);
                    constraint = solver.Equal(allNorInputs, solver.Not(outputTerm));
                    break;

                case Type.or:
                    CspTerm allOrInputs = solver.Or(inputTerms);
                    constraint = solver.Equal(allOrInputs, outputTerm);
                    break;

                case Type.xor:
                    //XOR is also:
                    //http://en.wikipedia.org/wiki/XOR_gate#/media/File:254px_3gate_XOR.jpg

                    CspTerm firstNand = solver.Not(solver.And(inputTerms));
                    CspTerm firstOr   = solver.Or(inputTerms);
                    CspTerm secendAnd = solver.And(firstNand, firstOr);

                    constraint = solver.Equal(secendAnd, outputTerm);
                    break;

                case Type.nxor:
                    //XOR is also:
                    //http://en.wikipedia.org/wiki/XOR_gate#/media/File:254px_3gate_XOR.jpg

                    CspTerm firstNand2 = solver.Not(solver.And(inputTerms));
                    CspTerm firstOr2   = solver.Or(inputTerms);
                    CspTerm secendAnd2 = solver.And(firstNand2, firstOr2);

                    constraint = solver.Equal(secendAnd2, solver.Not(outputTerm));
                    break;
                }

                solver.AddConstraints(constraint);
                //Debug.WriteLine("SAT OUT!");
            }
        }
Exemplo n.º 12
0
        /// <summary>
        /// Generates a constraint system based on a variability model. The constraint system can be used to check for satisfiability of configurations as well as optimization.
        /// </summary>
        /// <param name="variables">Empty input, outputs a list of CSP terms that correspond to the configuration options of the variability model</param>
        /// <param name="optionToTerm">A map to get for a given configuration option the corresponding CSP term of the constraint system</param>
        /// <param name="termToOption">A map that gives for a given CSP term the corresponding configuration option of the variability model</param>
        /// <param name="vm">The variability model for which we generate a constraint system</param>
        /// <returns>The generated constraint system consisting of logical terms representing configuration options as well as their boolean constraints.</returns>
        internal static ConstraintSystem GetGeneralConstraintSystem(out Dictionary <CspTerm, bool> variables, out Dictionary <ConfigurationOption, CspTerm> optionToTerm, out Dictionary <CspTerm, ConfigurationOption> termToOption, VariabilityModel vm)
        {
            ConstraintSystem S = ConstraintSystem.CreateSolver();

            optionToTerm = new Dictionary <ConfigurationOption, CspTerm>();
            termToOption = new Dictionary <CspTerm, ConfigurationOption>();
            variables    = new Dictionary <CspTerm, bool>();

            foreach (ConfigurationOption o in vm.getOptions())
            {
                CspDomain binDomain = S.DefaultBoolean;
                CspTerm   temp;
                if (o is BinaryOption)
                {
                    temp = S.CreateVariable(binDomain, o);
                }
                else
                {
                    NumericOption numOpt = (NumericOption)o;
                    temp = S.CreateVariable(S.CreateIntegerInterval((int)numOpt.Min_value, (int)numOpt.Max_value), o);
                }

                optionToTerm.Add(o, temp);
                termToOption.Add(temp, o);
                if (o is NumericOption)
                {
                    variables.Add(temp, false);
                }
                else
                {
                    variables.Add(temp, true);
                }
            }

            List <List <ConfigurationOption> > alreadyHandledAlternativeOptions = new List <List <ConfigurationOption> >();

            //Constraints of a single configuration option
            foreach (ConfigurationOption current in vm.getOptions())
            {
                CspTerm cT = optionToTerm[current];
                if (current.Parent == null || current.Parent == vm.Root)
                {
                    if ((current is BinaryOption && ((BinaryOption)current).Optional == false && current.Excluded_Options.Count == 0))
                    {
                        S.AddConstraints(S.Implies(S.True, cT));
                    }
                    else
                    {
                        S.AddConstraints(S.Implies(cT, optionToTerm[vm.Root]));
                    }
                }

                if (current.Parent != null && current.Parent != vm.Root)
                {
                    CspTerm parent = optionToTerm[(BinaryOption)current.Parent];
                    S.AddConstraints(S.Implies(cT, parent));
                    if (current is BinaryOption && ((BinaryOption)current).Optional == false && current.Excluded_Options.Count == 0)
                    {
                        S.AddConstraints(S.Implies(parent, cT));//mandatory child relationship
                    }
                }

                // Add numeric integer values
                if (current is NumericOption)
                {
                    NumericOption  numOpt = (NumericOption)current;
                    List <double>  values = numOpt.getAllValues();
                    List <CspTerm> equals = new List <CspTerm>();
                    foreach (double d in values)
                    {
                        equals.Add(S.Equal((int)d, cT));
                    }
                    S.AddConstraints(S.Or(equals.ToArray()));
                }

                //Alternative or other exclusion constraints
                if (current.Excluded_Options.Count > 0 && current is BinaryOption)
                {
                    BinaryOption binOpt = (BinaryOption)current;
                    List <ConfigurationOption> alternativeOptions = binOpt.collectAlternativeOptions();
                    if (alternativeOptions.Count > 0)
                    {
                        //Check whether we handled this group of alternatives already
                        foreach (var alternativeGroup in alreadyHandledAlternativeOptions)
                        {
                            foreach (var alternative in alternativeGroup)
                            {
                                if (current == alternative)
                                {
                                    goto handledAlternative;
                                }
                            }
                        }

                        //It is not allowed that an alternative group has no parent element
                        CspTerm parent = null;
                        if (current.Parent == null)
                        {
                            parent = S.True;
                        }
                        else
                        {
                            parent = optionToTerm[(BinaryOption)current.Parent];
                        }

                        CspTerm[] terms = new CspTerm[alternativeOptions.Count + 1];
                        terms[0] = cT;
                        int i = 1;
                        foreach (BinaryOption altEle in alternativeOptions)
                        {
                            CspTerm temp = optionToTerm[altEle];
                            terms[i] = temp;
                            i++;
                        }
                        S.AddConstraints(S.Implies(parent, S.ExactlyMofN(1, terms)));
                        alreadyHandledAlternativeOptions.Add(alternativeOptions);
                        handledAlternative : { }
                    }

                    //Excluded option(s) as cross-tree constraint(s)
                    List <List <ConfigurationOption> > nonAlternative = binOpt.getNonAlternativeExlcudedOptions();
                    if (nonAlternative.Count > 0)
                    {
                        foreach (var excludedOption in nonAlternative)
                        {
                            CspTerm[] orTerm = new CspTerm[excludedOption.Count];
                            int       i      = 0;
                            foreach (var opt in excludedOption)
                            {
                                CspTerm target = optionToTerm[(BinaryOption)opt];
                                orTerm[i] = target;
                                i++;
                            }
                            S.AddConstraints(S.Implies(cT, S.Not(S.Or(orTerm))));
                        }
                    }
                }
                //Handle implies
                if (current.Implied_Options.Count > 0)
                {
                    foreach (List <ConfigurationOption> impliedOr in current.Implied_Options)
                    {
                        CspTerm[] orTerms = new CspTerm[impliedOr.Count];
                        //Possible error: if a binary option impies a numeric option
                        for (int i = 0; i < impliedOr.Count; i++)
                        {
                            orTerms[i] = optionToTerm[(BinaryOption)impliedOr.ElementAt(i)];
                        }
                        S.AddConstraints(S.Implies(optionToTerm[current], S.Or(orTerms)));
                    }
                }
            }

            //Handle global cross-tree constraints involving multiple options at a time
            // the constraints should be in conjunctive normal form
            foreach (string constraint in vm.BinaryConstraints)
            {
                bool     and = false;
                string[] terms;
                if (constraint.Contains("&"))
                {
                    and   = true;
                    terms = constraint.Split('&');
                }
                else
                {
                    terms = constraint.Split('|');
                }

                CspTerm[] cspTerms = new CspTerm[terms.Count()];
                int       i        = 0;
                foreach (string t in terms)
                {
                    string optName = t.Trim();
                    if (optName.StartsWith("-") || optName.StartsWith("!"))
                    {
                        optName = optName.Substring(1);
                        BinaryOption binOpt     = vm.getBinaryOption(optName);
                        CspTerm      cspElem    = optionToTerm[binOpt];
                        CspTerm      notCspElem = S.Not(cspElem);
                        cspTerms[i] = notCspElem;
                    }
                    else
                    {
                        BinaryOption binOpt  = vm.getBinaryOption(optName);
                        CspTerm      cspElem = optionToTerm[binOpt];
                        cspTerms[i] = cspElem;
                    }
                    i++;
                }
                if (and)
                {
                    S.AddConstraints(S.And(cspTerms));
                }
                else
                {
                    S.AddConstraints(S.Or(cspTerms));
                }
            }
            return(S);
        }
Exemplo n.º 13
0
        /// <summary>
        /// Generates a constraint system based on a variability model. The constraint system can be used to check for satisfiability of configurations as well as optimization.
        /// </summary>
        /// <param name="variables">Empty input, outputs a list of CSP terms that correspond to the configuration options of the variability model</param>
        /// <param name="optionToTerm">A map to get for a given configuration option the corresponding CSP term of the constraint system</param>
        /// <param name="termToOption">A map that gives for a given CSP term the corresponding configuration option of the variability model</param>
        /// <param name="vm">The variability model for which we generate a constraint system</param>
        /// <returns>The generated constraint system consisting of logical terms representing configuration options as well as their boolean constraints.</returns>
        internal static ConstraintSystem getConstraintSystem(out List <CspTerm> variables, out Dictionary <BinaryOption, CspTerm> optionToTerm, out Dictionary <CspTerm, BinaryOption> termToOption, VariabilityModel vm)
        {
            //Reusing seems to not work correctely. The problem: configurations are realized as additional constraints for the system.
            //however, when checking for the next config, the old config's constraints remain in the solver such that we have a wrong result.

            /*
             * if (csystem != null && variables_global != null && optionToTerm_global != null && termToOption_global != null && vm != null)
             * {//For optimization purpose
             *  if (vm.BinaryOptions.Count == vm_global.BinaryOptions.Count && vm.Name.Equals(vm_global.Name))
             *  {
             *      variables = variables_global;
             *      optionToTerm = optionToTerm_global;
             *      termToOption = termToOption_global;
             *      return csystem;
             *  }
             * }*/

            ConstraintSystem S = ConstraintSystem.CreateSolver();

            optionToTerm = new Dictionary <BinaryOption, CspTerm>();
            termToOption = new Dictionary <CspTerm, BinaryOption>();
            variables    = new List <CspTerm>();
            foreach (BinaryOption binOpt in vm.BinaryOptions)
            {
                CspDomain domain = S.DefaultBoolean;
                CspTerm   temp   = S.CreateVariable(domain, binOpt);
                optionToTerm.Add(binOpt, temp);
                termToOption.Add(temp, binOpt);
                variables.Add(temp);
            }

            List <List <ConfigurationOption> > alreadyHandledAlternativeOptions = new List <List <ConfigurationOption> >();

            //Constraints of a single configuration option
            foreach (BinaryOption current in vm.BinaryOptions)
            {
                CspTerm cT = optionToTerm[current];
                if (current.Parent == null || current.Parent == vm.Root)
                {
                    if (current.Optional == false && current.Excluded_Options.Count == 0)
                    {
                        S.AddConstraints(S.Implies(S.True, cT));
                    }
                    else
                    {
                        S.AddConstraints(S.Implies(cT, optionToTerm[vm.Root]));
                    }
                }

                if (current.Parent != null && current.Parent != vm.Root)
                {
                    CspTerm parent = optionToTerm[(BinaryOption)current.Parent];
                    S.AddConstraints(S.Implies(cT, parent));
                    if (current.Optional == false && current.Excluded_Options.Count == 0)
                    {
                        S.AddConstraints(S.Implies(parent, cT));//mandatory child relationship
                    }
                }

                //Alternative or other exclusion constraints
                if (current.Excluded_Options.Count > 0)
                {
                    List <ConfigurationOption> alternativeOptions = current.collectAlternativeOptions();
                    if (alternativeOptions.Count > 0)
                    {
                        //Check whether we handled this group of alternatives already
                        foreach (var alternativeGroup in alreadyHandledAlternativeOptions)
                        {
                            foreach (var alternative in alternativeGroup)
                            {
                                if (current == alternative)
                                {
                                    goto handledAlternative;
                                }
                            }
                        }

                        //It is not allowed that an alternative group has no parent element
                        CspTerm parent = null;
                        if (current.Parent == null)
                        {
                            parent = S.True;
                        }
                        else
                        {
                            parent = optionToTerm[(BinaryOption)current.Parent];
                        }

                        CspTerm[] terms = new CspTerm[alternativeOptions.Count + 1];
                        terms[0] = cT;
                        int i = 1;
                        foreach (BinaryOption altEle in alternativeOptions)
                        {
                            CspTerm temp = optionToTerm[altEle];
                            terms[i] = temp;
                            i++;
                        }
                        S.AddConstraints(S.Implies(parent, S.ExactlyMofN(1, terms)));
                        alreadyHandledAlternativeOptions.Add(alternativeOptions);
                        handledAlternative : { }
                    }

                    //Excluded option(s) as cross-tree constraint(s)
                    List <List <ConfigurationOption> > nonAlternative = current.getNonAlternativeExlcudedOptions();
                    if (nonAlternative.Count > 0)
                    {
                        foreach (var excludedOption in nonAlternative)
                        {
                            CspTerm[] orTerm = new CspTerm[excludedOption.Count];
                            int       i      = 0;
                            foreach (var opt in excludedOption)
                            {
                                CspTerm target = optionToTerm[(BinaryOption)opt];
                                orTerm[i] = target;
                                i++;
                            }
                            S.AddConstraints(S.Implies(cT, S.Not(S.Or(orTerm))));
                        }
                    }
                }
                //Handle implies
                if (current.Implied_Options.Count > 0)
                {
                    foreach (List <ConfigurationOption> impliedOr in current.Implied_Options)
                    {
                        CspTerm[] orTerms = new CspTerm[impliedOr.Count];
                        //Possible error: if a binary option impies a numeric option
                        for (int i = 0; i < impliedOr.Count; i++)
                        {
                            orTerms[i] = optionToTerm[(BinaryOption)impliedOr.ElementAt(i)];
                        }
                        S.AddConstraints(S.Implies(optionToTerm[current], S.Or(orTerms)));
                    }
                }
            }

            //Handle global cross-tree constraints involving multiple options at a time
            // the constraints should be in conjunctive normal form
            foreach (string constraint in vm.BinaryConstraints)
            {
                bool     and = false;
                string[] terms;
                if (constraint.Contains("&"))
                {
                    and   = true;
                    terms = constraint.Split('&');
                }
                else
                {
                    terms = constraint.Split('|');
                }

                CspTerm[] cspTerms = new CspTerm[terms.Count()];
                int       i        = 0;
                foreach (string t in terms)
                {
                    string optName = t.Trim();
                    if (optName.StartsWith("-") || optName.StartsWith("!"))
                    {
                        optName = optName.Substring(1);
                        BinaryOption binOpt     = vm.getBinaryOption(optName);
                        CspTerm      cspElem    = optionToTerm[binOpt];
                        CspTerm      notCspElem = S.Not(cspElem);
                        cspTerms[i] = notCspElem;
                    }
                    else
                    {
                        BinaryOption binOpt  = vm.getBinaryOption(optName);
                        CspTerm      cspElem = optionToTerm[binOpt];
                        cspTerms[i] = cspElem;
                    }
                    i++;
                }
                if (and)
                {
                    S.AddConstraints(S.And(cspTerms));
                }
                else
                {
                    S.AddConstraints(S.Or(cspTerms));
                }
            }
            csystem             = S;
            optionToTerm_global = optionToTerm;
            vm_global           = vm;
            termToOption_global = termToOption;
            variables_global    = variables;
            return(S);
        }
Exemplo n.º 14
0
        static void Main(string[] args)
        {
            try
            {
                Console.WriteLine("Seleccione el método por el que desea resolver el problema:\n1 Programación por restricciones\n2 Programación Lineal");
                switch (int.Parse(Console.ReadLine()))
                {
                case 1:
                    SolverContext context = new SolverContext();
                    Model         model   = context.CreateModel();
                    // Creación de variables
                    Decision x1 = new Decision(Domain.Integer, "x1");
                    model.AddDecision(x1);
                    Decision x2 = new Decision(Domain.Integer, "x2");
                    model.AddDecision(x2);
                    Decision x3 = new Decision(Domain.Integer, "x3");
                    model.AddDecision(x3);
                    // Creación de limites
                    model.AddConstraint("limitX1", 50 <= x1 <= 300);
                    model.AddConstraint("limitX2", 100 <= x2 <= 200);
                    model.AddConstraint("limitX3", 20 <= x3 <= 1000);
                    // Creación de restricciones
                    model.AddConstraint("restriccion1", 200 <= (x1 + x2 + x3) <= 280);
                    model.AddConstraint("restriccion2", 100 <= (x1 + (3 * x3)) <= 2000);
                    model.AddConstraint("restriccion3", 50 <= ((2 + x1) + (4 * x3)) <= 1000);
                    // Función objetivo
                    model.AddGoal("maximo", GoalKind.Maximize, -(4 * x1) - (2 * x2) + x3);
                    // Solucion
                    Solution solucion = context.Solve(new SimplexDirective());
                    Report   reporte  = solucion.GetReport();
                    // Imprimir
                    Console.WriteLine(reporte);
                    Console.ReadLine();
                    break;

                case 2:
                    //Solucionador específico
                    ConstraintSystem csp = ConstraintSystem.CreateSolver();
                    // Creacíón de variables
                    CspTerm sx1 = csp.CreateVariable(csp.CreateIntegerInterval(50, 300), "x1");
                    CspTerm sx2 = csp.CreateVariable(csp.CreateIntegerInterval(100, 200), "x2");
                    CspTerm sx3 = csp.CreateVariable(csp.CreateIntegerInterval(20, 1000), "x3");
                    // Creación de restricciones
                    csp.AddConstraints(200 <= (sx1 + sx2 + sx3) <= 280,
                                       100 <= sx1 + (3 * sx2) <= 2000,
                                       50 <= (2 * sx1) + (4 * sx3) <= 1000);

                    // Solución
                    ConstraintSolverSolution cspSolucion = csp.Solve();
                    int numero = 1;
                    while (cspSolucion.HasFoundSolution)
                    {
                        object rx1, rx2, rx3;
                        if (!cspSolucion.TryGetValue(sx1, out rx1) || !cspSolucion.TryGetValue(sx2, out rx2) || !cspSolucion.TryGetValue(sx3, out rx3))
                        {
                            throw new InvalidProgramException("No se encontro solución");
                        }
                        Console.WriteLine(String.Format("Solución {0} :\nx1={1}\nx2={2}\nx3={3}", numero, rx1, rx2, rx3));
                        numero += 1;
                        cspSolucion.GetNext();
                    }

                    /*
                     * //Solucionador específico
                     * SimplexSolver sSolver = new SimplexSolver();
                     * //Creación de variables
                     * int sx1, sx2, sx3;
                     * sSolver.AddVariable("x1", out sx1);
                     * sSolver.SetBounds(sx1, 50, 300);
                     * sSolver.AddVariable("x2", out sx2);
                     * sSolver.SetBounds(sx2, 100, 200);
                     * sSolver.AddVariable("x3", out sx3);
                     * sSolver.SetBounds(sx3,20,1000);
                     * //Creación de restricciones
                     * int r1, r2, r3, goal;
                     * sSolver.AddRow("restriccion1", out r1);
                     * sSolver.SetCoefficient(r1, sx1, 1);
                     * sSolver.SetCoefficient(r1, sx2, 1);
                     * sSolver.SetCoefficient(r1, sx3, 1);
                     * sSolver.SetBounds(r1, 200, 280);
                     * sSolver.AddRow("restriccion2", out r2);
                     * sSolver.SetCoefficient(r2, sx1, 1);
                     * sSolver.SetCoefficient(r2, sx2, 3);
                     * sSolver.SetBounds(r2, 100, 2000);
                     * sSolver.AddRow("restriccion3", out r3);
                     * sSolver.SetCoefficient(r3, sx1, 2);
                     * sSolver.SetCoefficient(r3, sx3, 4);
                     * sSolver.SetBounds(r3, 50, 1000);
                     * //Función objetivo
                     * sSolver.AddRow("objetivo", out goal);
                     * sSolver.SetCoefficient(goal, sx1, -4);
                     * sSolver.SetCoefficient(goal, sx2, -2);
                     * sSolver.SetCoefficient(goal, sx3, 1);
                     * sSolver.SetBounds(goal, Rational.NegativeInfinity,Rational.PositiveInfinity);
                     * sSolver.AddGoal(goal, 1, false);
                     * //Solución
                     * sSolver.Solve(new SimplexSolverParams());
                     * sSolver.GetReport();
                     */
                    break;
                }
            }
            catch (Exception ex)
            {
                Console.WriteLine(ex.Message);
                Console.WriteLine(ex.StackTrace);
                Console.ReadLine();
            }
        }
Exemplo n.º 15
0
        ///// <summary> Helper function for reading the Bus Driver data file
        ///// </summary>
        //static List<string> Numerals(string line)
        //{
        //    List<string> result = new List<string>();
        //    int left = 0;
        //    while (left < line.Length)
        //    {
        //        char c = line[left];
        //        if (('0' <= c) && (c <= '9'))
        //        {
        //            int right = left + 1;
        //            while ((right < line.Length) && ('0' <= line[right]) && (line[right] <= '9'))
        //                right++;
        //            result.Add(line.Substring(left, right - left));
        //            left = right + 1;
        //        }
        //        else
        //            left++;
        //    }
        //    return result;
        //}

        /// <summary> Bus Drivers.  Data taken from data files of London bus companies, with the
        ///           problem being to find the cheapest, complete, non-overlapping set of task
        ///           assignments that will give a feasible schedule.
        /// </summary>
        public static void BusDrivers(string sourceFilePath)
        {
            // http://www-old.cs.st-andrews.ac.uk/~ianm/CSPLib/prob/prob022/index.html

            ConstraintSystem S = ConstraintSystem.CreateSolver();

            List <CspTerm> driverCosts  = new List <CspTerm>();
            List <int[]>   driversTasks = new List <int[]>();
            int            nTasks       = 0;

            // Read the data file.  Each row specifies a driver cost, a count of tasks, and the task numbers

            try
            {
                using (StreamReader sr = new StreamReader(sourceFilePath))
                {
                    String line;

                    while ((line = sr.ReadLine()) != null)
                    {
                        int[] tasks;
                        driverCosts.Add(S.Constant(ReadDriver(line, out tasks)));
                        nTasks += tasks.Length;
                        Array.Sort <int>(tasks);
                        driversTasks.Add(tasks);
                    }
                }
                int nDrivers = driversTasks.Count;

                // create a master list of tasks by sorting the raw union and then compressing out duplicates.

                int[] allTasks = new int[nTasks];
                nTasks = 0;
                foreach (int[] tasks in driversTasks)
                {
                    foreach (int x in tasks)
                    {
                        allTasks[nTasks++] = x;
                    }
                }
                Array.Sort <int>(allTasks);
                nTasks = 0;
                for (int i = 1; i < allTasks.Length; i++)
                {
                    if (allTasks[nTasks] < allTasks[i])
                    {
                        allTasks[++nTasks] = allTasks[i];
                    }
                }
                nTasks++;
                Array.Resize <int>(ref allTasks, nTasks);

                // We now have an array of all the tasks, and a list of all the drivers.

                // The problem statement comes down to:
                //    - each task must be assigned exactly once
                //    - minimize the cost of drivers

                // We add a boolean vector representing the drivers, true if the driver is to be used.

                CspTerm[] driversUsed = S.CreateBooleanVector("drivers", nDrivers);   // these are the Decision Variables

                //  We now create an array which maps which tasks are in which drivers.
                //  In addition to this static map, we create a dynamic map of the usage and the costs.

                CspTerm[][] taskActualUse    = new CspTerm[nTasks][];
                CspTerm[]   driverActualCost = new CspTerm[nDrivers];
                for (int t = 0; t < nTasks; t++)
                {
                    taskActualUse[t] = new CspTerm[nDrivers];
                    for (int r = 0; r < nDrivers; r++)
                    {
                        taskActualUse[t][r] = (0 <= Array.BinarySearch <int>(driversTasks[r], allTasks[t])) ? driversUsed[r] : S.False;
                    }
                    S.AddConstraints(
                        S.ExactlyMofN(1, taskActualUse[t])  // this task appears exactly once
                        );
                }

                // set the goal

                for (int r = 0; r < nDrivers; r++)
                {
                    driverActualCost[r] = driversUsed[r] * driverCosts[r];   // dynamic cost map
                }
                S.TryAddMinimizationGoals(S.Sum(driverActualCost));

                // now run the Solver and print the solutions

                int solnId = 0;
                ConstraintSolverSolution soln = S.Solve();
                if (soln.HasFoundSolution)
                {
                    System.Console.WriteLine("Solution #" + solnId++);
                    for (int d = 0; d < driversUsed.Length; d++)
                    {
                        object isUsed;
                        if (!soln.TryGetValue(driversUsed[d], out isUsed))
                        {
                            throw new InvalidProgramException("can't find drive in the solution: " + d.ToString());
                        }

                        // Take only the decision variables which turn out true.
                        // For each true row, print the row number and the list of tasks.

                        if (1 == (int)isUsed)
                        {
                            StringBuilder line = new StringBuilder(d.ToString());
                            line.Append(": ");
                            foreach (int x in driversTasks[d])
                            {
                                line.Append(x.ToString()).Append(", ");
                            }
                            System.Console.WriteLine(line.ToString());
                        }
                    }
                }
                if (solnId == 0)
                {
                    System.Console.WriteLine("No solution found.");
                }
            }
            catch (Exception e)
            {
                // Let the user know what went wrong.
                Console.WriteLine("The file could not be read:");
                Console.WriteLine(e.Message);
            }
        }
        /// <summary>
        /// Based on a given (partial) configuration and a variability, we aim at finding all optimally maximal or minimal (in terms of selected binary options) configurations.
        /// </summary>
        /// <param name="config">The (partial) configuration which needs to be expaned to be valid.</param>
        /// <param name="vm">Variability model containing all options and their constraints.</param>
        /// <param name="minimize">If true, we search for the smallest (in terms of selected options) valid configuration. If false, we search for the largest one.</param>
        /// <param name="unwantedOptions">Binary options that we do not want to become part of the configuration. Might be part if there is no other valid configuration without them</param>
        /// <returns>A list of configurations that satisfies the VM and the goal (or null if there is none).</returns>
        public List <List <BinaryOption> > MaximizeConfig(List <BinaryOption> config, VariabilityModel vm, bool minimize, List <BinaryOption> unwantedOptions)
        {
            List <CspTerm> variables = new List <CspTerm>();
            Dictionary <BinaryOption, CspTerm> elemToTerm = new Dictionary <BinaryOption, CspTerm>();
            Dictionary <CspTerm, BinaryOption> termToElem = new Dictionary <CspTerm, BinaryOption>();
            ConstraintSystem S = CSPsolver.getConstraintSystem(out variables, out elemToTerm, out termToElem, vm);

            //Feature Selection
            if (config != null)
            {
                foreach (BinaryOption binOpt in config)
                {
                    CspTerm term = elemToTerm[binOpt];
                    S.AddConstraints(S.Implies(S.True, term));
                }
            }
            //Defining Goals
            CspTerm[] finalGoals = new CspTerm[variables.Count];
            for (int r = 0; r < variables.Count; r++)
            {
                if (minimize == true)
                {
                    BinaryOption binOpt = termToElem[variables[r]];
                    if (unwantedOptions != null && (unwantedOptions.Contains(binOpt) && !config.Contains(binOpt)))
                    {
                        finalGoals[r] = variables[r] * 10000;
                    }
                    else
                    {
                        // Element is part of an altnerative Group  ... we want to select always the same option of the group, so we give different weights to the member of the group
                        //Functionality deactivated... todo needs further handling

                        /*if (binOpt.getAlternatives().Count != 0)
                         * {
                         *  finalGoals[r] = variables[r] * (binOpt.getID() * 10);
                         * }
                         * else
                         * {*/
                        finalGoals[r] = variables[r] * 1;
                        //}

                        // wenn in einer alternative, dann bekommt es einen wert nach seiner reihenfolge
                        // id mal 10
                    }
                }
                else
                {
                    finalGoals[r] = variables[r] * -1;   // dynamic cost map
                }
            }
            S.TryAddMinimizationGoals(S.Sum(finalGoals));

            ConstraintSolverSolution    soln          = S.Solve();
            List <string>               erg2          = new List <string>();
            List <BinaryOption>         tempConfig    = new List <BinaryOption>();
            List <List <BinaryOption> > resultConfigs = new List <List <BinaryOption> >();

            while (soln.HasFoundSolution && soln.Quality == ConstraintSolverSolution.SolutionQuality.Optimal)
            {
                tempConfig.Clear();
                foreach (CspTerm cT in variables)
                {
                    if (soln.GetIntegerValue(cT) == 1)
                    {
                        tempConfig.Add(termToElem[cT]);
                    }
                }
                if (minimize && tempConfig != null)
                {
                    resultConfigs.Add(tempConfig);
                    break;
                }
                if (!Configuration.containsBinaryConfiguration(resultConfigs, tempConfig))
                {
                    resultConfigs.Add(tempConfig);
                }
                soln.GetNext();
            }
            return(resultConfigs);
        }
Exemplo n.º 17
0
        private static ConstraintSystem AddConstraintsToSolver(
            ConstraintSystem solver, ZebraPuzzleConstraints constraints)
        {
            solver.AddConstraints(
                constraints.TheEnglishManLivesInTheRedHouse());
            solver.AddConstraints(
                constraints.TheSwedeHasADog());
            solver.AddConstraints(
                constraints.TheDaneDrinksTea());
            solver.AddConstraints(
                constraints.TheGreenHouseIsImmediatelyLeftOfTheWhiteHouse());
            solver.AddConstraints(
                constraints.TheyDrinkCoffeeInTheGreenHouse());
            solver.AddConstraints(
                constraints.TheManWhoSmokesPallMallHasBirds());
            solver.AddConstraints(
                constraints.InTheYellowHouseTheySmokeDunhill());
            solver.AddConstraints(
                constraints.InTheMiddleHouseTheyDrinkMilk());
            solver.AddConstraints(
                constraints.TheNorwegianLivesInTheFirstHouse());
            solver.AddConstraints(
                constraints.TheManWhoSmokesBlendInHouseNextToHouseWithCats());
            solver.AddConstraints(
                constraints.InHouseNextToHouseWhereHaveAHorseSmokeDunhill());
            solver.AddConstraints(
                constraints.TheManWhoSmokesBlueMasterDrinksBeer());
            solver.AddConstraints(
                constraints.TheGermanSmokesPrince());
            solver.AddConstraints(
                constraints.TheNorwegianLivesNextToTheBlueHouse());
            solver.AddConstraints(
                constraints.TheyDrinkWaterInHouseNextToHouseWhereSmokeBlend());

            return(solver);
        }
Exemplo n.º 18
0
        public ConstraintSolverSolution SolveB(int maxSolutions = 100)
        {
            ConstraintSystem S = ConstraintSystem.CreateSolver();

            //Define how many agents may work per shift
            CspDomain cspShiftsForceDomain = S.CreateIntegerInterval(first: 0, last: MaxAgents);

            //Decision variables, one per shift, that will hold the result of how may agents must work per shift to fullfil requirements
            CspTerm[] cspShiftsForce = S.CreateVariableVector(domain: cspShiftsForceDomain, key: "force", length: Shifts.Count);

            //index shifts, their variable CspTerm by the shift's relative no (0=first, 1=second, etc)
            ShiftsX = new Dictionary <Models.Shift, CspTerm>();
            int i = 0;

            Shifts.ForEach(x => { ShiftsX.Add(x, cspShiftsForce[i]); i++; });

            //Constraint - Agents on every half hour must be >= requirement for that half hour
            List <CspTerm> cspHalfHourExcess = new List <CspTerm>();

            foreach (var halfHourRq in HalfHourRequirements)
            {
                //find shifts including that halftime, and calculate their sum of force
                List <CspTerm> cspActive = new List <CspTerm>();
                foreach (var entry in ShiftsX)
                {
                    if (entry.Key.IncludesHalfHour(halfHourRq.Start))
                    {
                        cspActive.Add(entry.Value);
                    }
                }

                //add constraint for sum of force of active shifts on that halfhour
                //if we need agents but no shifts exists for a halfhour, do not add a constraint
                if (cspActive.Count > 0)
                {
                    var s = S.Sum(cspActive.ToArray()) - S.Constant(halfHourRq.RequiredForce);
                    S.AddConstraints(
                        S.LessEqual(constant: 0, inputs: s)
                        );
                    cspHalfHourExcess.Add(s);
                }
            }

            //var goal = S.Sum(shiftsX.Values.ToArray());
            //bool ok = S.TryAddMinimizationGoals(goal);

            var  goalMinExcess = S.Sum(cspHalfHourExcess.ToArray());
            bool ok            = S.TryAddMinimizationGoals(goalMinExcess);

            ConstraintSolverSolution solution = S.Solve();

            Console.WriteLine();
            GetSolutionsAll(solution: solution, maxSolutions: maxSolutions);
            if (ShiftsForce == null || ShiftsForce.Count == 0)
            {
                Console.WriteLine("No solution found");
            }

            if (ShiftsForce != null)
            {
                foreach (var shiftForceEntry in ShiftsForce)
                {
                    ShowSolution(no: shiftForceEntry.Key, shiftsForce: shiftForceEntry.Value, showAgents: true, showSlots: false);
                }
            }

            return(solution);
        }
Exemplo n.º 19
0
        public ConstraintSystem PrepareCspSolver()
        {
            ConstraintSystem S = ConstraintSystem.CreateSolver();

            //Define how many agents may work per shift
            var       maxRq = HalfHourRequirements.Max(x => x.RequiredForce);
            CspDomain cspShiftsForceDomain = S.CreateIntegerInterval(first: 0, last: maxRq);

            //var cspShiftsForceDomain = S.CreateIntegerSet(new int[] { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 });

            //Decision variables, one per shift, that will hold the result of how may agents must work per shift to fullfil requirements
            CspTerm[] cspShiftsForce = S.CreateVariableVector(domain: cspShiftsForceDomain, key: "force", length: Shifts.Count);

            //index shifts, their variable CspTerm by the shift's relative no (0=first, 1=second, etc)
            ShiftsX = new Dictionary <Models.Shift, CspTerm>();
            int i = 0;

            Shifts.ForEach(x => { ShiftsX.Add(x, cspShiftsForce[i]); i++; });

            //Constraint - Agents from every active shift on every half hour must be >= requirement for that half hour
            List <CspTerm> cspHalfHourExcess = new List <CspTerm>();

            foreach (var halfHourRq in HalfHourRequirements)
            {
                //find shifts including that halftime, and calculate their sum of force
                List <CspTerm> cspActive = new List <CspTerm>();
                foreach (var entry in ShiftsX)
                {
                    if (entry.Key.IncludesHalfHour(halfHourRq.Start))
                    {
                        cspActive.Add(entry.Value);
                    }
                }

                //add constraint for sum of force of active shifts on that halfhour
                //if we need agents but no shifts exists for a halfhour, do not add a constraint
                if (cspActive.Count > 0)
                {
                    //var s = S.Sum(cspActive.ToArray()) - S.Constant(halfHourRq.RequiredForce);
                    S.AddConstraints(
                        S.LessEqual(constant: halfHourRq.RequiredForce, inputs: S.Sum(cspActive.ToArray()))
                        );
                    //cspHalfHourExcess.Add(s);
                }
            }

            //if (false && cspHalfHourExcess.Count > 0)
            //    S.AddConstraints(
            //      S.LessEqual(constant: 0, inputs: S.Sum(cspHalfHourExcess.ToArray()))
            //    );

            bool xx = true;

            if (xx)
            {
                var  goal = S.Sum(ShiftsX.Values.ToArray());
                bool ok   = S.TryAddMinimizationGoals(goal);
            }
            else
            {
                //S.RemoveAllMinimizationGoals();
                var  goalMinExcess = S.Sum(cspHalfHourExcess.ToArray());
                bool ok            = S.TryAddMinimizationGoals(goalMinExcess);
            }
            return(S);
        }
        /// <summary>
        /// This method searches for a corresponding methods in the dynamically loaded assemblies and calls it if found. It prefers due to performance reasons the Microsoft Solver Foundation implementation.
        /// </summary>
        /// <param name="config">The (partial) configuration which needs to be expaned to be valid.</param>
        /// <param name="vm">Variability model containing all options and their constraints.</param>
        /// <param name="minimize">If true, we search for the smallest (in terms of selected options) valid configuration. If false, we search for the largest one.</param>
        /// <param name="unWantedOptions">Binary options that we do not want to become part of the configuration. Might be part if there is no other valid configuration without them.</param>
        /// <returns>The valid configuration (or null if there is none) that satisfies the VM and the goal.</returns>
        public List <BinaryOption> MinimizeConfig(List <BinaryOption> config, VariabilityModel vm, bool minimize, List <BinaryOption> unWantedOptions)
        {
            List <CspTerm> variables = new List <CspTerm>();
            Dictionary <BinaryOption, CspTerm> elemToTerm = new Dictionary <BinaryOption, CspTerm>();
            Dictionary <CspTerm, BinaryOption> termToElem = new Dictionary <CspTerm, BinaryOption>();
            ConstraintSystem S = CSPsolver.getConstraintSystem(out variables, out elemToTerm, out termToElem, vm);


            //Feature Selection
            foreach (BinaryOption binOpt in config)
            {
                CspTerm term = elemToTerm[binOpt];
                S.AddConstraints(S.Implies(S.True, term));
            }

            //Defining Goals
            CspTerm[] finalGoals = new CspTerm[variables.Count];
            for (int r = 0; r < variables.Count; r++)
            {
                if (minimize == true)
                {
                    if (unWantedOptions != null && (unWantedOptions.Contains(termToElem[variables[r]]) && !config.Contains(termToElem[variables[r]])))
                    {
                        finalGoals[r] = variables[r] * 100;
                    }
                    else
                    {
                        finalGoals[r] = variables[r] * 1;
                    }
                }
                else
                {
                    finalGoals[r] = variables[r] * -1;   // dynamic cost map
                }
            }

            S.TryAddMinimizationGoals(S.Sum(finalGoals));

            ConstraintSolverSolution soln       = S.Solve();
            List <string>            erg2       = new List <string>();
            List <BinaryOption>      tempConfig = new List <BinaryOption>();

            while (soln.HasFoundSolution)
            {
                tempConfig.Clear();
                foreach (CspTerm cT in variables)
                {
                    if (soln.GetIntegerValue(cT) == 1)
                    {
                        tempConfig.Add(termToElem[cT]);
                    }
                }

                if (minimize && tempConfig != null)
                {
                    break;
                }
                soln.GetNext();
            }
            return(tempConfig);
        }
Exemplo n.º 21
0
        public static void Run()
        {
            ConstraintSystem S = ConstraintSystem.CreateSolver();

            List <KeyValuePair <CspTerm, string> > termList = new List <KeyValuePair <CspTerm, string> >();

            // create a Term between [1..5], associate it with a name for later ease of display

            NamedTerm namedTerm = delegate(string name) {
                CspTerm x = S.CreateVariable(S.CreateIntegerInterval(1, 5), name);
                termList.Add(new KeyValuePair <CspTerm, string>(x, name));
                return(x);
            };

            // the people and attributes will all be matched via the house they reside in.

            CspTerm English = namedTerm("English"), Spanish = namedTerm("Spanish"), Japanese = namedTerm("Japanese"), Italian = namedTerm("Italian"), Norwegian = namedTerm("Norwegian");
            CspTerm red = namedTerm("red"), green = namedTerm("green"), white = namedTerm("white"), blue = namedTerm("blue"), yellow = namedTerm("yellow");
            CspTerm dog = namedTerm("dog"), snails = namedTerm("snails"), fox = namedTerm("fox"), horse = namedTerm("horse"), zebra = namedTerm("zebra");
            CspTerm painter = namedTerm("painter"), sculptor = namedTerm("sculptor"), diplomat = namedTerm("diplomat"), violinist = namedTerm("violinist"), doctor = namedTerm("doctor");
            CspTerm tea = namedTerm("tea"), coffee = namedTerm("coffee"), milk = namedTerm("milk"), juice = namedTerm("juice"), water = namedTerm("water");

            S.AddConstraints(
                S.Unequal(English, Spanish, Japanese, Italian, Norwegian),
                S.Unequal(red, green, white, blue, yellow),
                S.Unequal(dog, snails, fox, horse, zebra),
                S.Unequal(painter, sculptor, diplomat, violinist, doctor),
                S.Unequal(tea, coffee, milk, juice, water),
                S.Equal(English, red),
                S.Equal(Spanish, dog),
                S.Equal(Japanese, painter),
                S.Equal(Italian, tea),
                S.Equal(1, Norwegian),
                S.Equal(green, coffee),
                S.Equal(1, green - white),
                S.Equal(sculptor, snails),
                S.Equal(diplomat, yellow),
                S.Equal(3, milk),
                S.Equal(1, S.Abs(Norwegian - blue)),
                S.Equal(violinist, juice),
                S.Equal(1, S.Abs(fox - doctor)),
                S.Equal(1, S.Abs(horse - diplomat))
                );

            bool unsolved = true;
            ConstraintSolverSolution soln = S.Solve();

            while (soln.HasFoundSolution)
            {
                unsolved = false;
                System.Console.WriteLine("solved.");
                StringBuilder[] houses = new StringBuilder[5];
                for (int i = 0; i < 5; i++)
                {
                    houses[i] = new StringBuilder(i.ToString());
                }
                foreach (KeyValuePair <CspTerm, string> kvp in termList)
                {
                    string item = kvp.Value;
                    object house;
                    if (!soln.TryGetValue(kvp.Key, out house))
                    {
                        throw new InvalidProgramException("can't find a Term in the solution: " + item);
                    }
                    houses[(int)house - 1].Append(", ");
                    houses[(int)house - 1].Append(item);
                }
                foreach (StringBuilder house in houses)
                {
                    System.Console.WriteLine(house);
                }
                soln.GetNext();
            }
            if (unsolved)
            {
                System.Console.WriteLine("No solution found.");
            }
            else
            {
                System.Console.WriteLine("Solution should have the Norwegian drinking water and the Japanese with the zebra.");
            }
        }
        public static void Run(int teamsNo)
        {
            // schedule N teams to play N-1 matches (one against every other team) with a difference
            //   of no more than 1 extra game away or home.  Note that N must be even (since every team
            //   must be paired every week).

            ConstraintSystem S = ConstraintSystem.CreateSolver();

            // The teams are numbered 0 to N-1 for simplicity in index lookups,
            //    since our arrays are zero-based.
            CspDomain Teams = S.CreateIntegerInterval(0, teamsNo - 1);


            CspTerm[][] matches = S.CreateVariableArray(Teams, "opponents", teamsNo, teamsNo - 1);

            CspTerm[][] atHome = S.CreateBooleanArray("atHome", teamsNo, teamsNo - 1);

            // each row represents the N-1 games the teams play.  The 0th week has an even-odd
            //  assignment since by symmetry that is equivalent to any other assignment and
            //  we thereby eliminate redundant solutions being enumerated.

            for (int t = 0; t < teamsNo; t++)
            {
                CspTerm atHomeSum = S.Sum(atHome[t]);
                S.AddConstraints(
                    S.Unequal(t, matches[t]),                                         // don't play self, and play every other team
                    S.LessEqual(teamsNo / 2 - 1, atHomeSum, S.Constant(teamsNo / 2)), // a balance of atHomes
                    S.Equal(t ^ 1, matches[t][0])                                     // even-odd pairing in the initial round
                    );
            }

            for (int w = 0; w < teamsNo - 1; w++)
            {
                S.AddConstraints(
                    S.Unequal(GetColumn(matches, w))              // every team appears once each week
                    );
                for (int t = 0; t < teamsNo; t++)
                {
                    S.AddConstraints(
                        S.Equal(t, S.Index(matches, matches[t][w], w)),           // Each team's pair's pair must be itself.
                        S.Equal(atHome[t][w], !S.Index(atHome, matches[t][w], w)) // Each pair is Home-Away or Away-Home.
                        );
                }
            }

            // That's it!  The problem is delivered to the solver.
            // Now to get an answer...

            //bool unsolved = true;
            ConstraintSolverSolution soln = S.Solve();

            if (soln.HasFoundSolution)
            {
                //unsolved = false;

                Console.Write("       | ");
                for (int w = 0; w < teamsNo - 1; w++)
                {
                    Console.Write("{1}Wk{0,2}", w + 1, w == 0 ? "" : " | ");
                }
                Console.WriteLine();
                Console.Write("       | ");
                for (int w = 0; w < teamsNo - 1; w++)
                {
                    Console.Write("{1}OP H", w + 1, w == 0 ? "" : " | ");
                }
                Console.WriteLine();
                Console.WriteLine("       {0}", "|" + new String('-', teamsNo * 6));
                for (int t = 0; t < teamsNo; t++)
                {
                    StringBuilder line = new StringBuilder();
                    line.AppendFormat("Team {0,2}| ", t + 1);
                    for (int w = 0; w < teamsNo - 1; w++)
                    {
                        object opponent, home;
                        if (!soln.TryGetValue(matches[t][w], out opponent))
                        {
                            throw new InvalidProgramException(matches[t][w].Key.ToString());
                        }
                        if (!soln.TryGetValue(atHome[t][w], out home))
                        {
                            throw new InvalidProgramException(atHome[t][w].Key.ToString());
                        }
                        line.AppendFormat("{2}{0,2} {1}",
                                          ((int)opponent) + 1,
                                          (int)home == 1 ? "*" : " ",
                                          w == 0 ? "" : " | "
                                          );
                        //line.Append(opponent.ToString());
                        //line.Append(((int)home == 1) ? " H," : " A,");
                    }
                    System.Console.WriteLine(line.ToString());
                }
                System.Console.WriteLine();
            }
            else
            {
                System.Console.WriteLine("No solution found.");
            }
        }
Exemplo n.º 23
0
        public static void Run(string parameters)
        {
            // http://www-old.cs.st-andrews.ac.uk/~ianm/CSPLib/prob/prob022/index.html

            ConstraintSystem S = ConstraintSystem.CreateSolver();

            List <CspTerm> driverCosts  = new List <CspTerm>();
            List <int[]>   driversTasks = new List <int[]>();
            int            nTasks       = 0;

            // Read the data file.  Each row specifies a driver cost, a count of tasks, and the task numbers
            try
            {
                //parse parameters to extract data
                //<line no> = bus driver no-1 (eg line 1 = driver0)
                //1 4 3 4 16 17
                //1 = cost of driver
                // 4 = number of bus routes (tasks)
                // 3, 4, 16, 17 = the bus routes (tasks) for the driver
                var lines = Regex.Split(parameters, "\r\n|\r|\n");
                foreach (var line in lines)
                {
                    if (string.IsNullOrWhiteSpace(line))
                    {
                        continue;
                    }

                    int[] tasks;
                    driverCosts.Add(S.Constant(ReadDriver(line, out tasks)));
                    nTasks += tasks.Length;
                    Array.Sort <int>(tasks);
                    driversTasks.Add(tasks);
                }
                int nDrivers = driversTasks.Count;

                // create a master list of unique tasks (bus routes) that be assigned to drivers
                List <int> tasksU = new List <int>();
                driversTasks.ForEach(x => tasksU.AddRange(x));
                int[] allTasks = tasksU.OrderBy(x => x).Distinct().ToArray();
                nTasks = allTasks.Length;


                // We now have an array of all the tasks, and a list of all the drivers.

                // The problem statement comes down to:
                //    - each task must be assigned exactly once
                //    - minimize the cost of drivers

                // We add a boolean vector representing the drivers, true if the driver is to be used.

                CspTerm[] driversUsed = S.CreateBooleanVector("drivers", nDrivers);   // these are the Decision Variables

                //  We now create an array which maps which tasks are in which drivers.
                //  In addition to this static map, we create a dynamic map of the usage and the costs.
                CspTerm[][] taskActualUse    = new CspTerm[nTasks][];
                CspTerm[]   driverActualCost = new CspTerm[nDrivers];
                for (int t = 0; t < nTasks; t++)              //for each task / bus route
                {
                    taskActualUse[t] = new CspTerm[nDrivers]; //for each route, array of all bus drivers (used to flag who may drive the route)
                    for (int r = 0; r < nDrivers; r++)        //for each driver
                    {
                        taskActualUse[t][r] = (0 <= Array.BinarySearch <int>(driversTasks[r], allTasks[t])) ? driversUsed[r] : S.False;
                    }
                    S.AddConstraints(
                        S.ExactlyMofN(1, taskActualUse[t])  // this task appears exactly once
                        );
                }

                // set the goal: minimize total driver's cost
                for (int r = 0; r < nDrivers; r++)
                {
                    driverActualCost[r] = driversUsed[r] * driverCosts[r];   // dynamic cost map
                }
                S.TryAddMinimizationGoals(S.Sum(driverActualCost));

                // now run the Solver and print the solutions
                int solnId = 0;
                ConstraintSolverSolution soln = S.Solve();
                if (soln.HasFoundSolution)
                {
                    System.Console.WriteLine("Solution #" + solnId++);
                    for (int d = 0; d < driversUsed.Length; d++)
                    {
                        object isUsed;
                        if (!soln.TryGetValue(driversUsed[d], out isUsed))
                        {
                            throw new InvalidProgramException("can't find drive in the solution: " + d.ToString());
                        }

                        // Take only the decision variables which turn out true.
                        // For each true row, print the row number and the list of tasks.

                        if (1 == (int)isUsed)
                        {
                            StringBuilder line = new StringBuilder(d.ToString());
                            line.Append(": ");
                            foreach (int x in driversTasks[d])
                            {
                                line.Append(x.ToString()).Append(", ");
                            }
                            System.Console.WriteLine(line.ToString());
                        }
                    }
                }
                if (solnId == 0)
                {
                    System.Console.WriteLine("No solution found.");
                }
            }
            catch (Exception e)
            {
                // Let the user know what went wrong.
                Console.WriteLine("The file could not be read:");
                Console.WriteLine(e.Message);
            }
        }