Exemplo n.º 1
0
        public override MBoolResponse AssignInstruction(MInstruction instruction, MSimulationState simulationState)
        {
            //Setup the ik
            this.ServiceAccess.IKService.Setup(this.AvatarDescription, new Dictionary <string, string>());

            //Reset all flags/states
            this.constraintManager         = new ConstraintManager(this.SceneAccess);
            this.singleShotIK              = false;
            this.singleShotIKTargetPosture = null;

            //Assign the instruction
            this.instruction = instruction;

            //Parse the parameters
            MBoolResponse result = this.ParseParameters(instruction);

            if (!result.Successful)
            {
                return(result);
            }


            //Compute the target posture
            if (this.singleShotIK)
            {
                List <MConstraint> tempConstraints = new List <MConstraint>();
                constraintManager.SetConstraints(ref tempConstraints);

                //Set the ik constraints
                constraintManager.SetEndeffectorConstraint(this.handJoint, targetTransform.Position, targetTransform.Rotation);

                //Compute the posture

                MIKServiceResult ikResult = this.ServiceAccess.IKService.CalculateIKPosture(simulationState.Current, constraintManager.GetJointConstraints(), new Dictionary <string, string>());

                this.singleShotIKTargetPosture = ikResult.Posture.Copy();


                //Clear the constraints in the constraint manager
                tempConstraints.Clear();
            }

            //Return true/success
            return(new MBoolResponse(true));
        }
Exemplo n.º 2
0
        /// <summary>
        /// Do step routine in which the actual simulation result is generated
        /// </summary>
        /// <param name="time"></param>
        /// <param name="simulationState"></param>
        /// <returns></returns>
        public override MSimulationResult DoStep(double time, MSimulationState simulationState)
        {
            //Create a new simulation result
            MSimulationResult result = new MSimulationResult()
            {
                Events             = new List <MSimulationEvent>(),
                Constraints        = simulationState.Constraints ?? new List <MConstraint>(),
                SceneManipulations = new List <MSceneManipulation>(),
                Posture            = simulationState.Current
            };

            //Compute the target transform at the beginning of each frame
            this.targetTransform = this.ComputeTargetTransform();

            //The presently active constraints
            List <MConstraint> globalConstraints = result.Constraints;

            //The local constraints defined within the MMU
            List <MConstraint> localConstraints = new List <MConstraint>();

            //Use the constraint manager to manage the local constraints
            constraintManager.SetConstraints(ref localConstraints);

            //Set the channel data to the approved state of the last frame (all MMUs were executed including the low prio grasp/positioning)
            this.SkeletonAccess.SetChannelData(simulationState.Initial);

            //Get the current hand position and rotation
            MVector3    currentHandPosition = this.SkeletonAccess.GetGlobalJointPosition(this.AvatarDescription.AvatarID, this.handJoint);
            MQuaternion currentHandRotation = this.SkeletonAccess.GetGlobalJointRotation(this.AvatarDescription.AvatarID, this.handJoint);


            //The next pose
            MTransform nextPose = null;

            //The current velocity used for path planning
            float currentVelocity = this.velocity;// + this.ComputeRootVelocity(time, simulationState);

            //Use the trajectory if defined
            if (this.trajectory != null)
            {
                //If a trajectory is used -> The target transform is the last point of the trajectory
                this.targetTransform = this.trajectory.Last();

                //Compute the next pose
                nextPose = this.DoLocalMotionPlanning(currentVelocity, this.angularVelocity, TimeSpan.FromSeconds(time), currentHandPosition, currentHandRotation, this.trajectory[trajectoryIndex].Position, this.trajectory[trajectoryIndex].Rotation);

                //Check if close to current target -> move to next target -> To do consider rotation
                if ((nextPose.Position.Subtract(trajectory[trajectoryIndex].Position)).Magnitude() < this.translationThreshold && MQuaternionExtensions.Angle(nextPose.Rotation, trajectory[trajectoryIndex].Rotation) < this.rotationThreshold && trajectoryIndex < trajectory.Count - 1)
                {
                    trajectoryIndex++;
                }
            }


            else
            {
                //Compute the next pose
                nextPose = this.DoLocalMotionPlanning(currentVelocity, this.angularVelocity, TimeSpan.FromSeconds(time), currentHandPosition, currentHandRotation, this.targetTransform.Position, this.targetTransform.Rotation);
            }


            //Get the current distance
            float currentDistance        = (nextPose.Position.Subtract(targetTransform.Position)).Magnitude();
            float currentAngularDistance = (float)MQuaternionExtensions.Angle(nextPose.Rotation, targetTransform.Rotation);


            //Check if the ik is only computed once and blending is performed subsequently
            if (this.singleShotIK)
            {
                //Estimate the weight for blending
                float weight = (float)Math.Min(1, (currentVelocity * time) / currentDistance);

                //To check -> Why is a deep copy required?
                result.Posture = Blending.PerformBlend((IntermediateSkeleton)this.SkeletonAccess, simulationState.Initial, this.singleShotIKTargetPosture.Copy(), weight, false);


                if (weight >= 1 - 1e-3)
                {
                    result.Events.Add(new MSimulationEvent(this.instruction.Name, mmiConstants.MSimulationEvent_End, this.instruction.ID));

                    constraintManager.SetEndeffectorConstraint(new MJointConstraint(this.handJoint)
                    {
                        GeometryConstraint = new MGeometryConstraint()
                        {
                            ParentObjectID     = "",
                            ParentToConstraint = new MTransform(System.Guid.NewGuid().ToString(), targetTransform.Position, targetTransform.Rotation)
                        }
                    });
                }
            }

            //Default scenario -> IK is computed for each frame
            else
            {
                if (currentDistance <= this.translationThreshold && currentAngularDistance <= this.rotationThreshold)
                {
                    //Set the target
                    nextPose.Position = targetTransform.Position;
                    nextPose.Rotation = targetTransform.Rotation;

                    MMICSharp.Adapter.Logger.Log(MMICSharp.Adapter.Log_level.L_INFO, "Reach finished");
                    result.Events.Add(new MSimulationEvent(this.instruction.Name, mmiConstants.MSimulationEvent_End, this.instruction.ID));
                }

                //Set the desired endeffector constraints
                constraintManager.SetEndeffectorConstraint(this.handJoint, nextPose.Position, nextPose.Rotation);
            }


            //Create a list with the specific constraints for the reach MMU -> Only get the specific ones that must be solved (local constraints)
            List <MConstraint> ikConstraints = constraintManager.GetJointConstraints();

            //Only solve if at least one constraint is defined
            if (ikConstraints.Count > 0)
            {
                int ikIterations = 1;

                MIKServiceResult ikResult = null;

                //Use the ik to compute a posture fulfilling the requested constraints
                //To do -> Try with different initial postures / compute suitability of the generated posture
                for (int i = 0; i < ikIterations; i++)
                {
                    //Compute twice
                    ikResult       = this.ServiceAccess.IKService.CalculateIKPosture(result.Posture, ikConstraints, new Dictionary <string, string>());
                    result.Posture = ikResult.Posture;
                }
            }

            //Update the constraint manager to operate on the global constraints
            constraintManager.SetConstraints(ref globalConstraints);

            //Integrate the newly defined constraints in the global ones
            constraintManager.Combine(localConstraints);

            //Just for better understanding -> Assign the previous constraints + integrated ones to the result (this is not neccessary since the constraint manager is operating on the reference)
            result.Constraints = globalConstraints;

            //Return the result
            return(result);
        }
Exemplo n.º 3
0
        /// <summary>
        /// Basic do step routine that is executed for each frame and generates the actual motion.
        /// </summary>
        /// <param name="time"></param>
        /// <param name="simulationState"></param>
        /// <returns></returns>
        private MSimulationResult DoStepIK(double time, MSimulationState simulationState)
        {
            //Create a default result
            MSimulationResult result = new MSimulationResult()
            {
                Events             = new List <MSimulationEvent>(),
                Constraints        = simulationState.Constraints ?? new List <MConstraint>(),
                SceneManipulations = new List <MSceneManipulation>(),
                Posture            = simulationState.Current
            };

            //The presently active constraints
            List <MConstraint> globalConstraints = result.Constraints;

            //The local constraints defined within the MMU
            List <MConstraint> localConstraints = new List <MConstraint>();

            //Use the constraint manager to manage the local constraints
            constraintManager.SetConstraints(ref localConstraints);

            //Set the channel data to the approved state of the last frame (all MMUs were executed including the low prio grasp/positioning)
            this.SkeletonAccess.SetChannelData(simulationState.Initial);

            //Get the current hand position and rotation
            MVector3    currentHandPosition = this.SkeletonAccess.GetGlobalJointPosition(this.AvatarDescription.AvatarID, this.handJoint);
            MQuaternion currentHandRotation = this.SkeletonAccess.GetGlobalJointRotation(this.AvatarDescription.AvatarID, this.handJoint);

            //Set the skeleton acess data to the current
            this.SkeletonAccess.SetChannelData(simulationState.Current);



            //Determine the target hand position (either underlying MMU or given via boundary constraints)
            MTransform targetTransform = new MTransform()
            {
                Position = this.SkeletonAccess.GetGlobalJointPosition(this.AvatarDescription.AvatarID, this.handJoint),
                Rotation = this.SkeletonAccess.GetGlobalJointRotation(this.AvatarDescription.AvatarID, this.handJoint)
            };


            MTransform nextPose          = null;
            float      translationWeight = 0;


            //Use the trajectory if defined
            if (this.trajectory != null && this.trajectory.Count > 0)
            {
                //Update the last element dynamically
                trajectory.Last().Position = targetTransform.Position;
                trajectory.Last().Rotation = targetTransform.Rotation;

                //Compute the next pose
                nextPose = this.DoLocalMotionPlanning(this.velocity, this.angularVelocity, TimeSpan.FromSeconds(time), currentHandPosition, currentHandRotation, this.trajectory[trajectoryIndex].Position, this.trajectory[trajectoryIndex].Rotation, out translationWeight);

                //Check if close to current target -> move to next target -> To do consider rotation
                if ((nextPose.Position.Subtract(trajectory[trajectoryIndex].Position)).Magnitude() < 0.1f && MQuaternionExtensions.Angle(nextPose.Rotation, trajectory[trajectoryIndex].Rotation) < 1f && trajectoryIndex < trajectory.Count - 1)
                {
                    trajectoryIndex++;
                }
            }


            else
            {
                //Compute the next pose
                nextPose = this.DoLocalMotionPlanning(this.velocity, this.angularVelocity, TimeSpan.FromSeconds(time), currentHandPosition, currentHandRotation, targetTransform.Position, targetTransform.Rotation, out translationWeight);
            }


            ////Determine the next pose using local motion planning
            //MTransform nextPose = this.DoLocalMotionPlanning(this.velocity, this.angularVelocity, TimeSpan.FromSeconds(time), currentHandPosition, currentHandRotation, targetHandPosition, targetHandRotation, out float translationWeight);

            //Perform a partial blend
            //result.Posture = this.PerformPartialBlend(this.handJoint, translationWeight, simulationState);



            //Get the current distance
            float currentDistance        = (nextPose.Position.Subtract(targetTransform.Position)).Magnitude();
            float currentAngularDistance = (float)MQuaternionExtensions.Angle(nextPose.Rotation, targetTransform.Rotation);


            //Handle the present state (either in ik mode oder blending)
            switch (this.state)
            {
            case ReleaseMotionState.IK:
                if (currentDistance < 0.02f && currentAngularDistance < 5f)
                {
                    //Switch to blending to realize the final share
                    this.state            = ReleaseMotionState.Blending;
                    this.elapsedBlendTime = 0;

                    //Set to global constraints
                    this.constraintManager.SetConstraints(ref globalConstraints);

                    //Remove all constraints for the respective hand
                    this.constraintManager.RemoveEndeffectorConstraints(this.handJoint);
                }
                else
                {
                    //Update the constraint
                    this.constraintManager.SetEndeffectorConstraint(this.handJoint, nextPose.Position, nextPose.Rotation);
                }
                break;
            }


            //Use the local constraint to compute the ik
            this.constraintManager.SetConstraints(ref localConstraints);



            //React depending on the given state
            switch (this.state)
            {
            //In ik mode the ik solver must be called
            case ReleaseMotionState.IK:

                //Create a list with the specific constraints for the reach MMU -> Only get the specific ones that must be solved (local constraints)
                List <MConstraint> ikConstraints = constraintManager.GetJointConstraints();

                //Only solve if at least one constraint is defined
                if (ikConstraints.Count > 0)
                {
                    //Compute twice
                    MIKServiceResult ikResult = this.ServiceAccess.IKService.CalculateIKPosture(result.Posture, ikConstraints, new Dictionary <string, string>());
                    result.Posture = ikResult.Posture;
                }
                break;

            //In blending mode, motion blending must be performed
            case ReleaseMotionState.Blending:

                //Perform a blend
                elapsedBlendTime += (float)time;

                float blendWeight = Math.Min(1, elapsedBlendTime / endBlendDuration);

                result.Posture = MMICSharp.Common.Tools.Blending.PerformBlend(this.SkeletonAccess as IntermediateSkeleton, simulationState.Initial, simulationState.Current, blendWeight, true);
                //Perform a partial blend
                //result.Posture = this.PerformPartialBlend(this.handJoint, blendWeight, simulationState);

                if (blendWeight >= 1f)
                {
                    result.Events.Add(new MSimulationEvent()
                    {
                        Name      = "Release Finished",
                        Reference = this.instruction.ID,
                        Type      = mmiConstants.MSimulationEvent_End
                    });
                }

                break;
            }



            //Combine the constraints
            this.constraintManager.SetConstraints(ref globalConstraints);
            this.constraintManager.Combine(localConstraints);

            return(result);
        }
Exemplo n.º 4
0
        /// <summary>
        /// Basic to step routine which computes the result of the current frame
        /// </summary>
        /// <param name="time"></param>
        /// <returns></returns>
        public override MSimulationResult DoStep(double time, MSimulationState simulationState)
        {
            //Create a new result
            MSimulationResult result = new MSimulationResult()
            {
                Events             = simulationState.Events ?? new List <MSimulationEvent>(),
                DrawingCalls       = new List <MDrawingCall>(),
                SceneManipulations = simulationState.SceneManipulations ?? new List <MSceneManipulation>(),
                Posture            = simulationState.Current,
                Constraints        = simulationState.Constraints ?? new List <MConstraint>()
            };

            //The presently active constraints
            List <MConstraint> globalConstraints = new List <MConstraint>(result.Constraints);

            //The local constraints defined within the MMU
            List <MConstraint> localConstraints = new List <MConstraint>();

            //Setup the constraint manager and use the local constraints
            this.constraintManager.SetConstraints(ref localConstraints);


            //Handle each active hand
            for (int i = this.activeHands.Count - 1; i >= 0; i--)
            {
                //Get the current hand
                HandContainer hand = this.activeHands[i];

                //Skip if hand is not initialized
                if (!hand.Initialized)
                {
                    continue;
                }

                //Get the transform of the object to be positioned
                MTransform currentObjectTransform = this.SceneAccess.GetTransformByID(hand.Instruction.Properties["SubjectID"]);

                //Get the transform of the target
                MTransform targetObjectTransform = null;

                //Determine the next location of the object (at the end of the frame)
                MTransform nextObjectTransform = null;

                //Check if trajectory is defined
                if (hand.Trajectory != null)
                {
                    //The last point is the target transform
                    targetObjectTransform = hand.Trajectory.Last();

                    //The current rajectory point
                    MTransform currentTrajectoryPoint = hand.Trajectory[hand.TrajectoryIndex];

                    //Estimate the next transfom based on local motion planning
                    nextObjectTransform = this.DoLocalMotionPlanning(hand.Velocity, hand.AngularVelocity, TimeSpan.FromSeconds(time), currentObjectTransform.Position, currentObjectTransform.Rotation, currentTrajectoryPoint.Position, currentTrajectoryPoint.Rotation, hand.CollisionAvoidance);

                    //Get the current distance
                    float currentDistance        = nextObjectTransform.Position.Subtract(hand.Trajectory[hand.TrajectoryIndex].Position).Magnitude();
                    float currentAngularDistance = (float)MQuaternionExtensions.Angle(nextObjectTransform.Rotation, hand.Trajectory[hand.TrajectoryIndex].Rotation);

                    //Check if close to current target -> move to next target
                    if (currentDistance < this.translationThreshold && currentAngularDistance < this.rotationThreshold && hand.TrajectoryIndex < hand.Trajectory.Count - 1)
                    {
                        hand.TrajectoryIndex++;
                    }
                }

                //Default behavior if no trajectory is specified
                else
                {
                    targetObjectTransform = this.ComputeTargetTransform(hand);

                    //Estimate the next pose of the scene object
                    nextObjectTransform = this.DoLocalMotionPlanning(hand.Velocity, hand.AngularVelocity, TimeSpan.FromSeconds(time), currentObjectTransform.Position, currentObjectTransform.Rotation, targetObjectTransform.Position, targetObjectTransform.Rotation, hand.CollisionAvoidance);
                }


                //Set the pose of the object to the next estimated pose
                result.SceneManipulations.Add(new MSceneManipulation()
                {
                    Transforms = new List <MTransformManipulation>()
                    {
                        new MTransformManipulation()
                        {
                            Target   = hand.Instruction.Properties.GetValue("SubjectID", "subjectID"),
                            Position = nextObjectTransform.Position,
                            Rotation = nextObjectTransform.Rotation
                        }
                    }
                });


                //Compute the next handpose based on the offset
                MTransform nextHandTransform = new MTransform("", nextObjectTransform.TransformPoint(hand.Offset.Position), nextObjectTransform.TransformRotation(hand.Offset.Rotation));

                //Set the ik constraints
                constraintManager.SetEndeffectorConstraint(hand.Type, nextHandTransform.Position, nextHandTransform.Rotation);

                //To do add constraints
                float distance        = (nextObjectTransform.Position.Subtract(targetObjectTransform.Position)).Magnitude();
                float angularDistance = (float)MQuaternionExtensions.Angle(nextObjectTransform.Rotation, targetObjectTransform.Rotation);


                //Check if goal criteria fulfilled
                if (distance < this.translationThreshold && angularDistance < this.rotationThreshold)
                {
                    //Increment the time
                    hand.ElapsedHoldTime += time;

                    if (hand.ElapsedHoldTime < hand.HoldTime)
                    {
                        continue;
                    }

                    this.activeHands.RemoveAt(i);

                    //Add new finished event
                    if (hand.BothHanded)
                    {
                        if (activeHands.Count == 0)
                        {
                            result.Events.Add(new MSimulationEvent(hand.Instruction.Name, mmiConstants.MSimulationEvent_End, hand.Instruction.ID));
                        }
                    }

                    //Single handed grasp
                    else
                    {
                        result.Events.Add(new MSimulationEvent(hand.Instruction.Name, mmiConstants.MSimulationEvent_End, hand.Instruction.ID));
                    }
                }
            }



            //Get the properties from the constraint manager
            List <MConstraint> jointConstraints = this.constraintManager.GetJointConstraints();


            //Use the ik service if at least one constraint must be solved
            if (jointConstraints.Count > 0)
            {
                MIKServiceResult ikResult = this.ServiceAccess.IKService.CalculateIKPosture(simulationState.Current, jointConstraints, new Dictionary <string, string>());
                result.Posture = ikResult.Posture;
            }

            //Configure the constraint manager to operate on the global constraints
            constraintManager.SetConstraints(ref globalConstraints);

            //Combine the global with the local ones
            constraintManager.Combine(localConstraints);

            //Provide the combined constraints as result
            result.Constraints = globalConstraints;

            //Return the simulation result
            return(result);
        }
Exemplo n.º 5
0
        public override MSimulationResult DoStep(double time, MSimulationState simulationState)
        {
            //Create a new simulation result
            MSimulationResult result = new MSimulationResult()
            {
                Events             = simulationState.Events ?? new List <MSimulationEvent>(),
                Constraints        = simulationState.Constraints ?? new List <MConstraint>(),
                SceneManipulations = simulationState.SceneManipulations ?? new List <MSceneManipulation>()
            };

            //Assign the constraints to a temp varilable
            List <MConstraint> constraints = result.Constraints;

            //Use the constraint manager to manage the constraints
            constraintManager.SetConstraints(ref constraints);


            //Get the hand position and rotation of the last frame (approved result)
            this.SkeletonAccess.SetChannelData(simulationState.Initial);
            MVector3    currentHandPosition = this.SkeletonAccess.GetGlobalJointPosition(this.AvatarDescription.AvatarID, this.handJoint);
            MQuaternion currentHandRotation = this.SkeletonAccess.GetGlobalJointRotation(this.AvatarDescription.AvatarID, this.handJoint);


            //Get the desired hand position (of the underlying motion e.g. idle)
            this.SkeletonAccess.SetChannelData(simulationState.Current);
            MVector3    targetHandPosition = this.SkeletonAccess.GetGlobalJointPosition(this.AvatarDescription.AvatarID, this.handJoint);
            MQuaternion targetHandRotation = this.SkeletonAccess.GetGlobalJointRotation(this.AvatarDescription.AvatarID, this.handJoint);


            //Add an offset on top of the position if desired
            if (this.addOffset)
            {
                targetHandPosition = ComputeNewPositionWithOffset(targetHandPosition, simulationState.Current);
            }

            //Move the hand from the current position to the target position
            MVector3 deltaPosition = targetHandPosition.Subtract(currentHandPosition);

            //Compute the distance of the hand to the target hand position
            float distanceToGoal = deltaPosition.Magnitude();


            //Create positioning finished event if not already created and distance below threshold
            if (distanceToGoal < this.positioningFinishedThreshold && !this.positioningFinished)
            {
                result.Events.Add(new MSimulationEvent("PositioningFinished", "PositioningFinished", this.instruction.ID));
                this.positioningFinished = true;
            }

            //Compute the current velocity based on the general max velocity and the velocity of the root motion
            float currentVelocity = this.velocity + this.ComputeRootVelocity(time, simulationState);

            //Compute the max distance which can be covered within the current frame
            float maxDistance = (float)(time * currentVelocity);

            //Compute the weight for slerping (weight increases with shrinking distance to target)
            float weight = Math.Max(0, 1 - distanceToGoal);

            //Create a new transform representing the next hand transform
            MTransform newHandTransform = new MTransform("", currentHandPosition.Clone(), currentHandRotation.Clone())
            {
                //Compute the new hand position (normalize delta position and multiply by max distance)
                Position = currentHandPosition.Add(deltaPosition.Normalize().Multiply(Math.Min(deltaPosition.Magnitude(), maxDistance))),

                //Just perform an interpolation to gather new hand rotation (weight is determined by the translation distance)
                Rotation = MQuaternionExtensions.Slerp(currentHandRotation, targetHandRotation, weight)
            };


            //Compute the corresponding positon/rotation of the object and
            //adjust the transformation of the object which should be moved
            result.SceneManipulations.Add(new MSceneManipulation()
            {
                Transforms = new List <MTransformManipulation>()
                {
                    new MTransformManipulation()
                    {
                        Target = this.objectTransform.ID,
                        //Compute the new global position of the object
                        Position = newHandTransform.TransformPoint(this.objectPositionOffset),
                        //Compute the new global rotation of the object
                        Rotation = newHandTransform.TransformRotation(this.objectRotationOffset)
                    }
                }
            });


            //Set the desired endeffector constraints
            constraintManager.SetEndeffectorConstraint(this.handJoint, newHandTransform.Position, newHandTransform.Rotation);

            //Generate a new posture using the ik solver and the specified constraints
            MIKServiceResult ikResult = this.ServiceAccess.IKService.CalculateIKPosture(simulationState.Current, constraintManager.GetJointConstraints(), new  Dictionary <string, string>());

            result.Posture = ikResult.Posture;

            //Return the result
            return(result);
        }
Exemplo n.º 6
0
        /// <summary>
        /// Do step routine in which the actual simulation result is generated
        /// </summary>
        /// <param name="time"></param>
        /// <param name="simulationState"></param>
        /// <returns></returns>
        public override MSimulationResult DoStep(double time, MSimulationState simulationState)
        {
            //Create a new simulation result
            MSimulationResult result = new MSimulationResult()
            {
                Events             = simulationState.Events != null ? simulationState.Events : new List <MSimulationEvent>(),
                Constraints        = simulationState.Constraints,
                SceneManipulations = simulationState.SceneManipulations != null ? simulationState.SceneManipulations : new List <MSceneManipulation>()
            };


            //Create variables representing the next object position/rotation
            MTransform nextObjectTransform = subjectTransform.Clone();

            //Use the constraint manager to manage the constraints
            List <MConstraint> tmpConstraints = result.Constraints;

            //Set the constraints
            constraintManager.SetConstraints(ref tmpConstraints);


            //Compute the new hand position and rotation
            MVector3 deltaPosition  = this.targetObjectTransform.Position.Subtract(subjectTransform.Position);
            float    distanceToGoal = deltaPosition.Magnitude();

            //Get the current object position
            float maxDistance = (float)time * 1.0f;

            //Check the current distance to goal
            if (distanceToGoal < 0.01f)
            {
                result.Events.Add(new MSimulationEvent(this.instruction.Name, mmiConstants.MSimulationEvent_End, this.instruction.ID));
            }
            else
            {
                //Compute the new hand position (normalize delta position and multiply by max distance)
                nextObjectTransform.Position = this.subjectTransform.Position.Add(deltaPosition.Normalize().Multiply(Math.Min(distanceToGoal, maxDistance)));

                //Compute the weight for slerping (weight increases with shrinking distance to target)
                float weight = Math.Max(0, 1 - distanceToGoal);

                //Just perform an interpolation to gather new hand rotation (weight is determined by the translation distance)
                nextObjectTransform.Rotation = MQuaternionExtensions.Slerp(this.subjectTransform.Rotation, this.targetObjectTransform.Rotation, weight);
            }

            //Adjust the transformation of the object which should be moved
            result.SceneManipulations.Add(new MSceneManipulation()
            {
                Transforms = new List <MTransformManipulation>()
                {
                    new MTransformManipulation()
                    {
                        Target   = this.subjectTransform.ID,
                        Position = nextObjectTransform.Position,
                        Rotation = nextObjectTransform.Rotation
                    }
                }
            });

            //Get the current hand position in global space
            MVector3    globalHandPosition = nextObjectTransform.TransformPoint(this.handPositionOffset);
            MQuaternion globalHandRotation = nextObjectTransform.TransformRotation(this.handRotationOffset);

            //Set the desired endeffector constraints
            constraintManager.SetEndeffectorConstraint(this.handJoint, globalHandPosition, globalHandRotation);



            MIKServiceResult ikResult = this.ServiceAccess.IKService.CalculateIKPosture(simulationState.Current, constraintManager.GetJointConstraints(), new Dictionary <string, string>());

            //Generate a new posture using the ik solver and the specified constraints
            result.Posture = ikResult.Posture;

            //Return the result
            return(result);
        }