public void Should_go_to_the_first_wish_and_return()
        {
            var warehouse = new Warehouse(1, 1, 1);
            var wishes    = new DummyPickings
            {
                PickingList = new List <PickingPos>
                {
                    new PickingPos(1, 1, 1, 1, 1, 1)
                }
            };
            var solver            = new CompositeSolver(warehouse, wishes);
            var solution          = solver.Solve();
            var shiftPointList    = solution.ShiftPointList;
            var destination       = new ShiftPoint(1, 1);
            var intermediatePoint = new ShiftPoint(1, 0);
            var wantedSolution    = new List <ShiftPoint>
            {
                _initShiftPoint,
                intermediatePoint,
                destination,
                intermediatePoint,
                _initShiftPoint
            };

            Check.That(shiftPointList).IsEqualTo(wantedSolution);
        }
Exemplo n.º 2
0
        protected override void Solve(out string answer)
        {
            answer = $"Solution not created yet...";
            StringBuilder   progress        = new StringBuilder("Composites checked: ");
            CompositeSolver compositeSolver = new CompositeSolver();
            List <long>     oddComposites   = new List <long>();

            //Pseudo code
            foreach (long candidate in Enumerable64.Range(1, 34000))
            {
                if (compositeSolver.IsOddComposite(candidate))
                {
                    oddComposites.Add(candidate);
                    if (compositeSolver.IsSumOfPrimeAndTwiceSquare(candidate))
                    {
                        progress.Append($"{candidate}, ");
                        //UpdateProgress(progress.ToString());
                    }
                    else
                    {
                        answer = $"The smallest odd composite that cannot be written as the sum of a prime and twice a square is: {candidate}.";
                        return;
                    }
                }
            }
        }
        public void Should_no_go_in_empty_aisles()
        {
            const int aiseLenght  = 2;
            var       warehouse   = new Warehouse(1, 6, aiseLenght);
            var       clientWish1 = new PickingPos(1, 1, 1, 1, aiseLenght, 1);
            var       clientWish2 = new PickingPos(2, 1, 6, 1, aiseLenght, 1);
            var       wishes      = new DummyPickings
            {
                PickingList = new List <PickingPos> {
                    clientWish1, clientWish2
                }
            };
            var solver             = new CompositeSolver(warehouse, wishes);
            var solution           = solver.Solve();
            var intermediatePoint  = new ShiftPoint(1, 0);
            var intermediatePoint2 = new ShiftPoint(7, 0);
            var wantedSolution     = new List <ShiftPoint>
            {
                _initShiftPoint,
                intermediatePoint,
                clientWish1.ConverToShiftPoint(),
                intermediatePoint,
                intermediatePoint2,
                clientWish2.ConverToShiftPoint(),
                intermediatePoint2,
                _initShiftPoint
            };

            Check.That(solution.ShiftPointList).IsEqualTo(wantedSolution);
        }
Exemplo n.º 4
0
        public void CompositeSolver_SparseFloat()
        {
            Matrix <float> matrix = SparseMatrix.OfArray(new[, ] {
                { 1f, 0f, 0f }, { 0f, 1f, 0f }, { 0f, 0f, 1f }
            });
            Vector <float>           vector = new DenseVector(new[] { 1f, 2f, 3f });
            IIterativeSolver <float> solver = new CompositeSolver(new List <IIterativeSolverSetup <float> > {
                new UserBiCgStabFloat()
            });

            CompositeSolver(matrix, vector, solver);
        }
Exemplo n.º 5
0
        public void CompositeSolver_DenseFloat()
        {
            Matrix <float> matrix = DenseMatrix.OfArray(new[, ] {
                { 5.00f, 2.00f, -4.00f }, { 3.00f, -7.00f, 6.00f }, { 4.00f, 1.00f, 5.00f }
            });
            Vector <float>           vector = new DenseVector(new[] { -7.0f, 38.0f, 43.0f });
            IIterativeSolver <float> solver = new CompositeSolver(new List <IIterativeSolverSetup <float> > {
                new UserBiCgStabFloat()
            });

            CompositeSolver(matrix, vector, solver);
        }
Exemplo n.º 6
0
        public void Solve_OneCellEmpty_DoSolves()
        {
            var field = new Field();

            field[0] = new[] { 0, 8, 9, 0, 0, 0, 0, 0, 0 };
            field[1] = new[] { 0, 3, 5, 6, 0, 0, 8, 0, 0 };
            field[2] = new[] { 6, 0, 0, 0, 0, 7, 9, 3, 0 };

            field[3] = new[] { 0, 0, 2, 7, 6, 9, 4, 0, 3 };
            field[4] = new[] { 0, 0, 0, 8, 0, 5, 0, 0, 0 };
            field[5] = new[] { 5, 0, 7, 3, 1, 4, 6, 0, 0 };

            field[6] = new[] { 0, 7, 6, 2, 0, 0, 0, 0, 9 };
            field[7] = new[] { 0, 0, 3, 0, 0, 6, 7, 8, 0 };
            field[8] = new[] { 0, 0, 0, 0, 0, 0, 2, 1, 0 };

            Print(field);

            var solver = new CompositeSolver(new ISolverInstance[] { new CrossingSolver(), new OccupationSolver() });

            var solvedField = solver.Solve(field);

            PrintZeroMetric(solvedField);
            Print(solvedField);

            solver.IsFieldModified.Should().BeTrue();

            solvedField.RowWithDuplicatesIndex().Should().Be(-1);
            solvedField.ColumnWithDuplicatesIndex().Should().Be(-1);
            solvedField.SquareWithDuplicatesIndex().Should().Be(-1);

            for (int row = 0; row < Constraints.Size; row++)
            {
                solvedField[row].Distinct().Should().BeEquivalentTo(Enumerable.Range(1, 9));
            }

            for (int col = 0; col < 9; col++)
            {
                var aColumn = new List <int>(9);
                for (int row = 0; row < 9; row++)
                {
                    aColumn.Add(solvedField[row][col]);
                }

                aColumn.Should().BeEquivalentTo(Enumerable.Range(1, 9));
            }
        }
Exemplo n.º 7
0
        /// <summary>
        /// The main method that runs the Composite solver.
        /// </summary>
        public void UseSolver()
        {
            // Create a sparse matrix. For now the size will be 10 x 10 elements
            Matrix matrix = CreateMatrix(10);

            // Create the right hand side vector. The size is the same as the matrix
            // and all values will be 2.0.
            Vector rightHandSideVector = new DenseVector(10, 2.0);

            // Create a new iterator. This checks for convergence of the results of the
            // iterative matrix solver.
            // In this case we'll create the default iterator
            IIterator iterator = Iterator.CreateDefault();

            // Create the solver
            CompositeSolver solver = new CompositeSolver(iterator);

            // Now that all is set we can solve the matrix equation.
            Vector solutionVector = solver.Solve(matrix, rightHandSideVector);

            // Another way to get the values is by using the overloaded solve method
            // In this case the solution vector needs to be of the correct size.
            solver.Solve(matrix, rightHandSideVector, solutionVector);

            // Finally you can check the reason the solver finished the iterative process
            // by calling the SolutionStatus property on the iterator
            ICalculationStatus status = iterator.Status;
            if (status is CalculationCancelled)
                Console.WriteLine("The user cancelled the calculation.");

            if (status is CalculationIndetermined)
                Console.WriteLine("Oh oh, something went wrong. The iterative process was never started.");

            if (status is CalculationConverged)
                Console.WriteLine("Yippee, the iterative process converged.");

            if (status is CalculationDiverged)
                Console.WriteLine("I'm sorry the iterative process diverged.");

            if (status is CalculationFailure)
                Console.WriteLine("Oh dear, the iterative process failed.");

            if (status is CalculationStoppedWithoutConvergence)
                Console.WriteLine("Oh dear, the iterative process did not converge.");
        }
Exemplo n.º 8
0
        static int Main(string[] args)
        {
            if (args.Length < 1 || args.Length > 2)
            {
                Console.WriteLine("Use: LinearEquationSolver.exe <matrix.csv> [<number-of-iterations>]");
                return(2);
            }

            Table table = Table.Load(args[0], new ReadSettings(Delimiter.Comma, false, false, FSharpOption <int> .None, ReadSettings.Default.ColumnTypes));

            if (table.Count <= 1)
            {
                throw new Exception("Expecting 2 or more columns");
            }


            var n = args.Length >= 2 ? int.Parse(args[1], CultureInfo.InvariantCulture) : 1;

            var columns = table.Select(column => column.Rows.AsReal as IEnumerable <double>);
            var A       = Matrix <double> .Build.DenseOfColumns(columns.Where((_, i) => i < table.Count - 1));

            var b = Vector <double> .Build.DenseOfEnumerable(columns.Last());

            var iterationCountStopCriterion = new IterationCountStopCriterion <double>(1000);
            var residualStopCriterion       = new ResidualStopCriterion <double>(1e-10);
            var monitor = new Iterator <double>(iterationCountStopCriterion, residualStopCriterion);
            var solver  = new CompositeSolver(SolverSetup <double> .LoadFromAssembly(System.Reflection.Assembly.GetExecutingAssembly()));

            Vector <double> x = null;

            for (var i = 0; i < n; i++)
            {
                //x = A.Solve(b);
                x = A.SolveIterative(b, solver, monitor);
            }

            Table result = Table.OfColumns(new[] { Column.Create("x", x.ToArray(), FSharpOption <int> .None) });

            Table.Save(result, "result.csv");

            return(0);
        }
        /// <summary>
        /// Run example
        /// </summary>
        public void Run()
        {
            // Format matrix output to console
            var formatProvider = (CultureInfo)CultureInfo.InvariantCulture.Clone();
            formatProvider.TextInfo.ListSeparator = " ";

            // Solve next system of linear equations (Ax=b):
            // 5*x + 2*y - 4*z = -7
            // 3*x - 7*y + 6*z = 38
            // 4*x + 1*y + 5*z = 43

            // Create matrix "A" with coefficients
            var matrixA = DenseMatrix.OfArray(new[,] { { 5.00, 2.00, -4.00 }, { 3.00, -7.00, 6.00 }, { 4.00, 1.00, 5.00 } });
            Console.WriteLine(@"Matrix 'A' with coefficients");
            Console.WriteLine(matrixA.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // Create vector "b" with the constant terms.
            var vectorB = new DenseVector(new[] { -7.0, 38.0, 43.0 });
            Console.WriteLine(@"Vector 'b' with the constant terms");
            Console.WriteLine(vectorB.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // Create stop criteriums to monitor an iterative calculation. There are next available stop criteriums:
            // - DivergenceStopCriterium: monitors an iterative calculation for signs of divergence;
            // - FailureStopCriterium: monitors residuals for NaN's;
            // - IterationCountStopCriterium: monitors the numbers of iteration steps;
            // - ResidualStopCriterium: monitors residuals if calculation is considered converged;

            // Stop calculation if 1000 iterations reached during calculation
            var iterationCountStopCriterium = new IterationCountStopCriterium(1000);

            // Stop calculation if residuals are below 1E-10 --> the calculation is considered converged
            var residualStopCriterium = new ResidualStopCriterium(1e-10);

            // Create monitor with defined stop criteriums
            var monitor = new Iterator(new IIterationStopCriterium[] { iterationCountStopCriterium, residualStopCriterium });

            // Load all suitable solvers from current assembly. Below in this example, there is user-defined solver
            // "class UserBiCgStab : IIterativeSolverSetup<double>" which uses regular BiCgStab solver. But user may create any other solver
            // and solver setup classes which implement IIterativeSolverSetup<T> and pass assembly to next function:
            CompositeSolver.LoadSolverInformationFromAssembly(Assembly.GetExecutingAssembly());

            // Create composite solver
            var solver = new CompositeSolver(monitor);

            // 1. Solve the matrix equation
            var resultX = solver.Solve(matrixA, vectorB);
            Console.WriteLine(@"1. Solve the matrix equation");
            Console.WriteLine();

            // 2. Check solver status of the iterations.
            // Solver has property IterationResult which contains the status of the iteration once the calculation is finished.
            // Possible values are:
            // - CalculationCancelled: calculation was cancelled by the user;
            // - CalculationConverged: calculation has converged to the desired convergence levels;
            // - CalculationDiverged: calculation diverged;
            // - CalculationFailure: calculation has failed for some reason;
            // - CalculationIndetermined: calculation is indetermined, not started or stopped;
            // - CalculationRunning: calculation is running and no results are yet known;
            // - CalculationStoppedWithoutConvergence: calculation has been stopped due to reaching the stopping limits, but that convergence was not achieved;
            Console.WriteLine(@"2. Solver status of the iterations");
            Console.WriteLine(solver.IterationResult);
            Console.WriteLine();

            // 3. Solution result vector of the matrix equation
            Console.WriteLine(@"3. Solution result vector of the matrix equation");
            Console.WriteLine(resultX.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 4. Verify result. Multiply coefficient matrix "A" by result vector "x"
            var reconstructVecorB = matrixA * resultX;
            Console.WriteLine(@"4. Multiply coefficient matrix 'A' by result vector 'x'");
            Console.WriteLine(reconstructVecorB.ToString("#0.00\t", formatProvider));
            Console.WriteLine();
        }
Exemplo n.º 10
0
        /// <summary>
        /// Run example
        /// </summary>
        public void Run()
        {
            // Format matrix output to console
            var formatProvider = (CultureInfo)CultureInfo.InvariantCulture.Clone();

            formatProvider.TextInfo.ListSeparator = " ";

            // Solve next system of linear equations (Ax=b):
            // 5*x + 2*y - 4*z = -7
            // 3*x - 7*y + 6*z = 38
            // 4*x + 1*y + 5*z = 43

            // Create matrix "A" with coefficients
            var matrixA = DenseMatrix.OfArray(new[, ] {
                { 5.00, 2.00, -4.00 }, { 3.00, -7.00, 6.00 }, { 4.00, 1.00, 5.00 }
            });

            Console.WriteLine(@"Matrix 'A' with coefficients");
            Console.WriteLine(matrixA.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // Create vector "b" with the constant terms.
            var vectorB = new DenseVector(new[] { -7.0, 38.0, 43.0 });

            Console.WriteLine(@"Vector 'b' with the constant terms");
            Console.WriteLine(vectorB.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // Create stop criteriums to monitor an iterative calculation. There are next available stop criteriums:
            // - DivergenceStopCriterium: monitors an iterative calculation for signs of divergence;
            // - FailureStopCriterium: monitors residuals for NaN's;
            // - IterationCountStopCriterium: monitors the numbers of iteration steps;
            // - ResidualStopCriterium: monitors residuals if calculation is considered converged;

            // Stop calculation if 1000 iterations reached during calculation
            var iterationCountStopCriterium = new IterationCountStopCriterium(1000);

            // Stop calculation if residuals are below 1E-10 --> the calculation is considered converged
            var residualStopCriterium = new ResidualStopCriterium(1e-10);

            // Create monitor with defined stop criteriums
            var monitor = new Iterator(new IIterationStopCriterium[] { iterationCountStopCriterium, residualStopCriterium });

            // Load all suitable solvers from current assembly. Below in this example, there is user-defined solver
            // "class UserBiCgStab : IIterativeSolverSetup<double>" which uses regular BiCgStab solver. But user may create any other solver
            // and solver setup classes which implement IIterativeSolverSetup<T> and pass assembly to next function:
            CompositeSolver.LoadSolverInformationFromAssembly(Assembly.GetExecutingAssembly());

            // Create composite solver
            var solver = new CompositeSolver(monitor);

            // 1. Solve the matrix equation
            var resultX = solver.Solve(matrixA, vectorB);

            Console.WriteLine(@"1. Solve the matrix equation");
            Console.WriteLine();

            // 2. Check solver status of the iterations.
            // Solver has property IterationResult which contains the status of the iteration once the calculation is finished.
            // Possible values are:
            // - CalculationCancelled: calculation was cancelled by the user;
            // - CalculationConverged: calculation has converged to the desired convergence levels;
            // - CalculationDiverged: calculation diverged;
            // - CalculationFailure: calculation has failed for some reason;
            // - CalculationIndetermined: calculation is indetermined, not started or stopped;
            // - CalculationRunning: calculation is running and no results are yet known;
            // - CalculationStoppedWithoutConvergence: calculation has been stopped due to reaching the stopping limits, but that convergence was not achieved;
            Console.WriteLine(@"2. Solver status of the iterations");
            Console.WriteLine(solver.IterationResult);
            Console.WriteLine();

            // 3. Solution result vector of the matrix equation
            Console.WriteLine(@"3. Solution result vector of the matrix equation");
            Console.WriteLine(resultX.ToString("#0.00\t", formatProvider));
            Console.WriteLine();

            // 4. Verify result. Multiply coefficient matrix "A" by result vector "x"
            var reconstructVecorB = matrixA * resultX;

            Console.WriteLine(@"4. Multiply coefficient matrix 'A' by result vector 'x'");
            Console.WriteLine(reconstructVecorB.ToString("#0.00\t", formatProvider));
            Console.WriteLine();
        }
        public override void ExecuteExample()
        {
            // <seealso cref="http://en.wikipedia.org/wiki/Biconjugate_gradient_stabilized_method">Biconjugate gradient stabilized method</seealso>
            MathDisplay.WriteLine("<b>Biconjugate gradient stabilised iterative solver</b>");

            // Format matrix output to console
            var formatProvider = (CultureInfo)CultureInfo.InvariantCulture.Clone();

            formatProvider.TextInfo.ListSeparator = " ";

            // Solve next system of linear equations (Ax=b):
            // 5*x + 2*y - 4*z = -7
            // 3*x - 7*y + 6*z = 38
            // 4*x + 1*y + 5*z = 43

            // Create matrix "A" with coefficients
            var matrixA = DenseMatrix.OfArray(new[, ] {
                { 5.00, 2.00, -4.00 }, { 3.00, -7.00, 6.00 }, { 4.00, 1.00, 5.00 }
            });

            MathDisplay.WriteLine(@"Matrix 'A' with coefficients");
            MathDisplay.WriteLine(matrixA.ToString("#0.00\t", formatProvider));
            MathDisplay.WriteLine();

            // Create vector "b" with the constant terms.
            var vectorB = new DenseVector(new[] { -7.0, 38.0, 43.0 });

            MathDisplay.WriteLine(@"Vector 'b' with the constant terms");
            MathDisplay.WriteLine(vectorB.ToString("#0.00\t", formatProvider));
            MathDisplay.WriteLine();

            // Create stop criteria to monitor an iterative calculation. There are next available stop criteria:
            // - DivergenceStopCriterion: monitors an iterative calculation for signs of divergence;
            // - FailureStopCriterion: monitors residuals for NaN's;
            // - IterationCountStopCriterion: monitors the numbers of iteration steps;
            // - ResidualStopCriterion: monitors residuals if calculation is considered converged;

            // Stop calculation if 1000 iterations reached during calculation
            var iterationCountStopCriterion = new IterationCountStopCriterion <double>(1000);

            // Stop calculation if residuals are below 1E-10 --> the calculation is considered converged
            var residualStopCriterion = new ResidualStopCriterion <double>(1e-10);

            // Create monitor with defined stop criteria
            var monitor = new Iterator <double>(iterationCountStopCriterion, residualStopCriterion);

            // Create Bi-Conjugate Gradient Stabilized solver
            var solverBiCgStab = new BiCgStab();

            // 1. Solve the matrix equation
            var resultX = matrixA.SolveIterative(vectorB, solverBiCgStab, monitor);

            MathDisplay.WriteLine(@"1. Solve the matrix equation");
            MathDisplay.WriteLine();

            // 2. Check solver status of the iterations.
            // Solver has property IterationResult which contains the status of the iteration once the calculation is finished.
            // Possible values are:
            // - CalculationCancelled: calculation was cancelled by the user;
            // - CalculationConverged: calculation has converged to the desired convergence levels;
            // - CalculationDiverged: calculation diverged;
            // - CalculationFailure: calculation has failed for some reason;
            // - CalculationIndetermined: calculation is indetermined, not started or stopped;
            // - CalculationRunning: calculation is running and no results are yet known;
            // - CalculationStoppedWithoutConvergence: calculation has been stopped due to reaching the stopping limits, but that convergence was not achieved;
            MathDisplay.WriteLine(@"2. Solver status of the iterations");
            MathDisplay.WriteLine(monitor.Status.ToString());
            MathDisplay.WriteLine();

            // 3. Solution result vector of the matrix equation
            MathDisplay.WriteLine(@"3. Solution result vector of the matrix equation");
            MathDisplay.WriteLine(resultX.ToString("#0.00\t", formatProvider));
            MathDisplay.WriteLine();

            // 4. Verify result. Multiply coefficient matrix "A" by result vector "x"
            var reconstructVecorB = matrixA * resultX;

            MathDisplay.WriteLine(@"4. Multiply coefficient matrix 'A' by result vector 'x'");
            MathDisplay.WriteLine(reconstructVecorB.ToString("#0.00\t", formatProvider));
            MathDisplay.WriteLine();



            MathDisplay.WriteLine("<b>Generalized product biconjugate gradient solver</b>");

            // Solve next system of linear equations (Ax=b):
            // 5*x + 2*y - 4*z = -7
            // 3*x - 7*y + 6*z = 38
            // 4*x + 1*y + 5*z = 43

            // Create matrix "A" with coefficients
            matrixA = DenseMatrix.OfArray(new[, ] {
                { 5.00, 2.00, -4.00 }, { 3.00, -7.00, 6.00 }, { 4.00, 1.00, 5.00 }
            });
            MathDisplay.WriteLine(@"Matrix 'A' with coefficients");
            MathDisplay.WriteLine(matrixA.ToString("#0.00\t", formatProvider));
            MathDisplay.WriteLine();

            // Create vector "b" with the constant terms.
            vectorB = new DenseVector(new[] { -7.0, 38.0, 43.0 });
            MathDisplay.WriteLine(@"Vector 'b' with the constant terms");
            MathDisplay.WriteLine(vectorB.ToString("#0.00\t", formatProvider));
            MathDisplay.WriteLine();

            // Create stop criteria to monitor an iterative calculation. There are next available stop criteria:
            // - DivergenceStopCriterion: monitors an iterative calculation for signs of divergence;
            // - FailureStopCriterion: monitors residuals for NaN's;
            // - IterationCountStopCriterion: monitors the numbers of iteration steps;
            // - ResidualStopCriterion: monitors residuals if calculation is considered converged;

            // Stop calculation if 1000 iterations reached during calculation
            iterationCountStopCriterion = new IterationCountStopCriterion <double>(1000);

            // Stop calculation if residuals are below 1E-10 --> the calculation is considered converged
            residualStopCriterion = new ResidualStopCriterion <double>(1e-10);

            // Create monitor with defined stop criteria
            monitor = new Iterator <double>(iterationCountStopCriterion, residualStopCriterion);

            // Create Generalized Product Bi-Conjugate Gradient solver
            var solverGpBiCg = new GpBiCg();

            // 1. Solve the matrix equation
            resultX = matrixA.SolveIterative(vectorB, solverGpBiCg, monitor);
            MathDisplay.WriteLine(@"1. Solve the matrix equation");
            MathDisplay.WriteLine();

            // 2. Check solver status of the iterations.
            // Solver has property IterationResult which contains the status of the iteration once the calculation is finished.
            // Possible values are:
            // - CalculationCancelled: calculation was cancelled by the user;
            // - CalculationConverged: calculation has converged to the desired convergence levels;
            // - CalculationDiverged: calculation diverged;
            // - CalculationFailure: calculation has failed for some reason;
            // - CalculationIndetermined: calculation is indetermined, not started or stopped;
            // - CalculationRunning: calculation is running and no results are yet known;
            // - CalculationStoppedWithoutConvergence: calculation has been stopped due to reaching the stopping limits, but that convergence was not achieved;
            MathDisplay.WriteLine(@"2. Solver status of the iterations");
            MathDisplay.WriteLine(monitor.Status.ToString());
            MathDisplay.WriteLine();

            // 3. Solution result vector of the matrix equation
            MathDisplay.WriteLine(@"3. Solution result vector of the matrix equation");
            MathDisplay.WriteLine(resultX.ToString("#0.00\t", formatProvider));
            MathDisplay.WriteLine();

            // 4. Verify result. Multiply coefficient matrix "A" by result vector "x"
            reconstructVecorB = matrixA * resultX;
            MathDisplay.WriteLine(@"4. Multiply coefficient matrix 'A' by result vector 'x'");
            MathDisplay.WriteLine(reconstructVecorB.ToString("#0.00\t", formatProvider));
            MathDisplay.WriteLine();


            MathDisplay.WriteLine("<b>Composite linear equation solver</b>");

            // Solve next system of linear equations (Ax=b):
            // 5*x + 2*y - 4*z = -7
            // 3*x - 7*y + 6*z = 38
            // 4*x + 1*y + 5*z = 43

            // Create matrix "A" with coefficients
            matrixA = DenseMatrix.OfArray(new[, ] {
                { 5.00, 2.00, -4.00 }, { 3.00, -7.00, 6.00 }, { 4.00, 1.00, 5.00 }
            });
            MathDisplay.WriteLine(@"Matrix 'A' with coefficients");
            MathDisplay.WriteLine(matrixA.ToString("#0.00\t", formatProvider));
            MathDisplay.WriteLine();

            // Create vector "b" with the constant terms.
            vectorB = new DenseVector(new[] { -7.0, 38.0, 43.0 });
            MathDisplay.WriteLine(@"Vector 'b' with the constant terms");
            MathDisplay.WriteLine(vectorB.ToString("#0.00\t", formatProvider));
            MathDisplay.WriteLine();

            // Create stop criteria to monitor an iterative calculation. There are next available stop criteria:
            // - DivergenceStopCriterion: monitors an iterative calculation for signs of divergence;
            // - FailureStopCriterion: monitors residuals for NaN's;
            // - IterationCountStopCriterion: monitors the numbers of iteration steps;
            // - ResidualStopCriterion: monitors residuals if calculation is considered converged;

            // Stop calculation if 1000 iterations reached during calculation
            iterationCountStopCriterion = new IterationCountStopCriterion <double>(1000);

            // Stop calculation if residuals are below 1E-10 --> the calculation is considered converged
            residualStopCriterion = new ResidualStopCriterion <double>(1e-10);

            // Create monitor with defined stop criteria
            monitor = new Iterator <double>(iterationCountStopCriterion, residualStopCriterion);

            // Load all suitable solvers from current assembly. Below (see UserBiCgStab) there is a custom user-defined solver
            // "class UserBiCgStab : IIterativeSolverSetup<double>" which derives from the regular BiCgStab solver. However users can
            // create any other solver and solver setup classes that implement IIterativeSolverSetup<T> and load the assembly that
            // contains them using the following function:
            var solverComp = new CompositeSolver(SolverSetup <double> .LoadFromAssembly(Assembly.GetExecutingAssembly()));

            // 1. Solve the linear system
            resultX = matrixA.SolveIterative(vectorB, solverComp, monitor);
            MathDisplay.WriteLine(@"1. Solve the matrix equation");
            MathDisplay.WriteLine();

            // 2. Check solver status of the iterations.
            // Solver has property IterationResult which contains the status of the iteration once the calculation is finished.
            // Possible values are:
            // - CalculationCancelled: calculation was cancelled by the user;
            // - CalculationConverged: calculation has converged to the desired convergence levels;
            // - CalculationDiverged: calculation diverged;
            // - CalculationFailure: calculation has failed for some reason;
            // - CalculationIndetermined: calculation is indetermined, not started or stopped;
            // - CalculationRunning: calculation is running and no results are yet known;
            // - CalculationStoppedWithoutConvergence: calculation has been stopped due to reaching the stopping limits, but that convergence was not achieved;
            MathDisplay.WriteLine(@"2. Solver status of the iterations");
            MathDisplay.WriteLine(monitor.Status.ToString());
            MathDisplay.WriteLine();

            // 3. Solution result vector of the matrix equation
            MathDisplay.WriteLine(@"3. Solution result vector of the matrix equation");
            MathDisplay.WriteLine(resultX.ToString("#0.00\t", formatProvider));
            MathDisplay.WriteLine();

            // 4. Verify result. Multiply coefficient matrix "A" by result vector "x"
            reconstructVecorB = matrixA * resultX;
            MathDisplay.WriteLine(@"4. Multiply coefficient matrix 'A' by result vector 'x'");
            MathDisplay.WriteLine(reconstructVecorB.ToString("#0.00\t", formatProvider));
            MathDisplay.WriteLine();


            MathDisplay.WriteLine("<b>Multiple-Lanczos biconjugate gradient stabilised iterative solver</b>");

            // Solve next system of linear equations (Ax=b):
            // 5*x + 2*y - 4*z = -7
            // 3*x - 7*y + 6*z = 38
            // 4*x + 1*y + 5*z = 43

            // Create matrix "A" with coefficients
            matrixA = DenseMatrix.OfArray(new[, ] {
                { 5.00, 2.00, -4.00 }, { 3.00, -7.00, 6.00 }, { 4.00, 1.00, 5.00 }
            });
            MathDisplay.WriteLine(@"Matrix 'A' with coefficients");
            MathDisplay.WriteLine(matrixA.ToString("#0.00\t", formatProvider));
            MathDisplay.WriteLine();

            // Create vector "b" with the constant terms.
            vectorB = new DenseVector(new[] { -7.0, 38.0, 43.0 });
            MathDisplay.WriteLine(@"Vector 'b' with the constant terms");
            MathDisplay.WriteLine(vectorB.ToString("#0.00\t", formatProvider));
            MathDisplay.WriteLine();

            // Create stop criteria to monitor an iterative calculation. There are next available stop criteria:
            // - DivergenceStopCriterion: monitors an iterative calculation for signs of divergence;
            // - FailureStopCriterion: monitors residuals for NaN's;
            // - IterationCountStopCriterion: monitors the numbers of iteration steps;
            // - ResidualStopCriterion: monitors residuals if calculation is considered converged;

            // Stop calculation if 1000 iterations reached during calculation
            iterationCountStopCriterion = new IterationCountStopCriterion <double>(1000);

            // Stop calculation if residuals are below 1E-10 --> the calculation is considered converged
            residualStopCriterion = new ResidualStopCriterion <double>(1e-10);

            // Create monitor with defined stop criteria
            monitor = new Iterator <double>(iterationCountStopCriterion, residualStopCriterion);

            // Create Multiple-Lanczos Bi-Conjugate Gradient Stabilized solver
            var solverLanczos = new MlkBiCgStab();

            // 1. Solve the matrix equation
            resultX = matrixA.SolveIterative(vectorB, solverLanczos, monitor);
            MathDisplay.WriteLine(@"1. Solve the matrix equation");
            MathDisplay.WriteLine();

            // 2. Check solver status of the iterations.
            // Solver has property IterationResult which contains the status of the iteration once the calculation is finished.
            // Possible values are:
            // - CalculationCancelled: calculation was cancelled by the user;
            // - CalculationConverged: calculation has converged to the desired convergence levels;
            // - CalculationDiverged: calculation diverged;
            // - CalculationFailure: calculation has failed for some reason;
            // - CalculationIndetermined: calculation is indetermined, not started or stopped;
            // - CalculationRunning: calculation is running and no results are yet known;
            // - CalculationStoppedWithoutConvergence: calculation has been stopped due to reaching the stopping limits, but that convergence was not achieved;
            MathDisplay.WriteLine(@"2. Solver status of the iterations");
            MathDisplay.WriteLine(monitor.Status.ToString());
            MathDisplay.WriteLine();

            // 3. Solution result vector of the matrix equation
            MathDisplay.WriteLine(@"3. Solution result vector of the matrix equation");
            MathDisplay.WriteLine(resultX.ToString("#0.00\t", formatProvider));
            MathDisplay.WriteLine();

            // 4. Verify result. Multiply coefficient matrix "A" by result vector "x"
            reconstructVecorB = matrixA * resultX;
            MathDisplay.WriteLine(@"4. Multiply coefficient matrix 'A' by result vector 'x'");
            MathDisplay.WriteLine(reconstructVecorB.ToString("#0.00\t", formatProvider));
            MathDisplay.WriteLine();


            MathDisplay.WriteLine("<b>Transpose freee quasi-minimal residual iterative solver</b>");

            // Solve next system of linear equations (Ax=b):
            // 5*x + 2*y - 4*z = -7
            // 3*x - 7*y + 6*z = 38
            // 4*x + 1*y + 5*z = 43

            // Create matrix "A" with coefficients
            matrixA = DenseMatrix.OfArray(new[, ] {
                { 5.00, 2.00, -4.00 }, { 3.00, -7.00, 6.00 }, { 4.00, 1.00, 5.00 }
            });
            MathDisplay.WriteLine(@"Matrix 'A' with coefficients");
            MathDisplay.WriteLine(matrixA.ToString("#0.00\t", formatProvider));
            MathDisplay.WriteLine();

            // Create vector "b" with the constant terms.
            vectorB = new DenseVector(new[] { -7.0, 38.0, 43.0 });
            MathDisplay.WriteLine(@"Vector 'b' with the constant terms");
            MathDisplay.WriteLine(vectorB.ToString("#0.00\t", formatProvider));
            MathDisplay.WriteLine();

            // Create stop criteria to monitor an iterative calculation. There are next available stop criteria:
            // - DivergenceStopCriterion: monitors an iterative calculation for signs of divergence;
            // - FailureStopCriterion: monitors residuals for NaN's;
            // - IterationCountStopCriterion: monitors the numbers of iteration steps;
            // - ResidualStopCriterion: monitors residuals if calculation is considered converged;

            // Stop calculation if 1000 iterations reached during calculation
            iterationCountStopCriterion = new IterationCountStopCriterion <double>(1000);

            // Stop calculation if residuals are below 1E-10 --> the calculation is considered converged
            residualStopCriterion = new ResidualStopCriterion <double>(1e-10);

            // Create monitor with defined stop criteria
            monitor = new Iterator <double>(iterationCountStopCriterion, residualStopCriterion);

            // Create Transpose Free Quasi-Minimal Residual solver
            var solverTFQMR = new TFQMR();

            // 1. Solve the matrix equation
            resultX = matrixA.SolveIterative(vectorB, solverTFQMR, monitor);
            MathDisplay.WriteLine(@"1. Solve the matrix equation");
            MathDisplay.WriteLine();

            // 2. Check solver status of the iterations.
            // Solver has property IterationResult which contains the status of the iteration once the calculation is finished.
            // Possible values are:
            // - CalculationCancelled: calculation was cancelled by the user;
            // - CalculationConverged: calculation has converged to the desired convergence levels;
            // - CalculationDiverged: calculation diverged;
            // - CalculationFailure: calculation has failed for some reason;
            // - CalculationIndetermined: calculation is indetermined, not started or stopped;
            // - CalculationRunning: calculation is running and no results are yet known;
            // - CalculationStoppedWithoutConvergence: calculation has been stopped due to reaching the stopping limits, but that convergence was not achieved;
            MathDisplay.WriteLine(@"2. Solver status of the iterations");
            MathDisplay.WriteLine(monitor.Status.ToString());
            MathDisplay.WriteLine();

            // 3. Solution result vector of the matrix equation
            MathDisplay.WriteLine(@"3. Solution result vector of the matrix equation");
            MathDisplay.WriteLine(resultX.ToString("#0.00\t", formatProvider));
            MathDisplay.WriteLine();

            // 4. Verify result. Multiply coefficient matrix "A" by result vector "x"
            reconstructVecorB = matrixA * resultX;
            MathDisplay.WriteLine(@"4. Multiply coefficient matrix 'A' by result vector 'x'");
            MathDisplay.WriteLine(reconstructVecorB.ToString("#0.00\t", formatProvider));
            MathDisplay.WriteLine();
        }