Exemplo n.º 1
0
        public void ExperiencePressureDifference(int cycle, float pressureDifference, Direction direction,
                                                 float pressureResistanceProbDelta, GridCoordinates throwTarget)
        {
            if (ControlledComponent == null)
            {
                return;
            }

            // TODO ATMOS stuns?

            var transform         = ControlledComponent.Owner.Transform;
            var pressureComponent = ControlledComponent.Owner.GetComponent <MovedByPressureComponent>();
            var maxForce          = MathF.Sqrt(pressureDifference) * 2.25f;
            var moveProb          = 100f;

            if (pressureComponent.PressureResistance > 0)
            {
                moveProb = MathF.Abs((pressureDifference / pressureComponent.PressureResistance * ProbabilityBasePercent) -
                                     ProbabilityOffset);
            }

            if (moveProb > ProbabilityOffset && _robustRandom.Prob(MathF.Min(moveProb / 100f, 1f)) &&
                !float.IsPositiveInfinity(pressureComponent.MoveResist) &&
                (!ControlledComponent.Anchored &&
                 (maxForce >= (pressureComponent.MoveResist * MoveForcePushRatio))) ||
                (ControlledComponent.Anchored && (maxForce >= (pressureComponent.MoveResist * MoveForceForcePushRatio))))
            {
                if (maxForce > ThrowForce && throwTarget != GridCoordinates.InvalidGrid)
                {
                    var moveForce = MathF.Min(maxForce * MathF.Clamp(moveProb, 0, 100) / 100f, 50f);
                    var pos       = throwTarget.Position - transform.GridPosition.Position;
                    LinearVelocity = pos * moveForce;
                }
                else
                {
                    var moveForce = MathF.Min(maxForce * MathF.Clamp(moveProb, 0, 100) / 100f, 25f);
                    LinearVelocity = direction.ToVec() * moveForce;
                }

                pressureComponent.LastHighPressureMovementAirCycle = cycle;
            }
        }
Exemplo n.º 2
0
        //[MethodImpl(MethodImplOptions.AggressiveInlining)]
        public void EqualizePressureInZone(int cycleNum)
        {
            if (Air == null || (_tileAtmosInfo.LastCycle >= cycleNum))
            {
                return;                                                        // Already done.
            }
            _tileAtmosInfo = new TileAtmosInfo();

            var startingMoles = Air.TotalMoles;
            var runAtmos      = false;

            // We need to figure if this is necessary
            foreach (var(direction, other) in _adjacentTiles)
            {
                if (other?.Air == null)
                {
                    continue;
                }
                var comparisonMoles = other.Air.TotalMoles;
                if (!(MathF.Abs(comparisonMoles - startingMoles) > Atmospherics.MinimumMolesDeltaToMove))
                {
                    continue;
                }
                runAtmos = true;
                break;
            }

            if (!runAtmos) // There's no need so we don't bother.
            {
                _tileAtmosInfo.LastCycle = cycleNum;
                return;
            }

            var queueCycle = ++_gridAtmosphereComponent.EqualizationQueueCycleControl;
            var totalMoles = 0f;
            var tiles      = new TileAtmosphere[Atmospherics.ZumosHardTileLimit];

            tiles[0] = this;
            _tileAtmosInfo.LastQueueCycle = queueCycle;
            var tileCount = 1;

            for (var i = 0; i < tileCount; i++)
            {
                if (i > Atmospherics.ZumosHardTileLimit)
                {
                    break;
                }
                var exploring = tiles[i];

                if (i < Atmospherics.ZumosTileLimit)
                {
                    var tileMoles = exploring.Air.TotalMoles;
                    exploring._tileAtmosInfo.MoleDelta = tileMoles;
                    totalMoles += tileMoles;
                }

                foreach (var(_, adj) in exploring._adjacentTiles)
                {
                    if (adj?.Air == null)
                    {
                        continue;
                    }
                    if (adj._tileAtmosInfo.LastQueueCycle == queueCycle)
                    {
                        continue;
                    }
                    adj._tileAtmosInfo = new TileAtmosInfo();

                    adj._tileAtmosInfo.LastQueueCycle = queueCycle;
                    if (tileCount < Atmospherics.ZumosHardTileLimit)
                    {
                        tiles[tileCount++] = adj;
                    }
                    if (adj.Air.Immutable)
                    {
                        // Looks like someone opened an airlock to space!
                        ExplosivelyDepressurize(cycleNum);
                        return;
                    }
                }
            }

            if (tileCount > Atmospherics.ZumosTileLimit)
            {
                for (var i = Atmospherics.ZumosTileLimit; i < tileCount; i++)
                {
                    //We unmark them. We shouldn't be pushing/pulling gases to/from them.
                    var tile = tiles[i];
                    if (tile == null)
                    {
                        continue;
                    }
                    tiles[i]._tileAtmosInfo.LastQueueCycle = 0;
                }

                tileCount = Atmospherics.ZumosTileLimit;
            }

            //tiles = tiles.AsSpan().Slice(0, tileCount).ToArray(); // According to my benchmarks, this is much slower.
            Array.Resize(ref tiles, tileCount);

            var averageMoles = totalMoles / (tiles.Length);
            var giverTiles   = new List <TileAtmosphere>();
            var takerTiles   = new List <TileAtmosphere>();

            for (var i = 0; i < tileCount; i++)
            {
                var tile = tiles[i];
                tile._tileAtmosInfo.LastCycle  = cycleNum;
                tile._tileAtmosInfo.MoleDelta -= averageMoles;
                if (tile._tileAtmosInfo.MoleDelta > 0)
                {
                    giverTiles.Add(tile);
                }
                else
                {
                    takerTiles.Add(tile);
                }
            }

            var logN = MathF.Log2(tiles.Length);

            // Optimization - try to spread gases using an O(nlogn) algorithm that has a chance of not working first to avoid O(n^2)
            if (giverTiles.Count > logN && takerTiles.Count > logN)
            {
                // Even if it fails, it will speed up the next part.
                Array.Sort(tiles, (a, b)
                           => a._tileAtmosInfo.MoleDelta.CompareTo(b._tileAtmosInfo.MoleDelta));

                foreach (var tile in tiles)
                {
                    tile._tileAtmosInfo.FastDone = true;
                    if (!(tile._tileAtmosInfo.MoleDelta > 0))
                    {
                        continue;
                    }
                    Direction eligibleAdjBits = 0;
                    var       amtEligibleAdj  = 0;
                    foreach (var direction in Cardinal)
                    {
                        if (!tile._adjacentTiles.TryGetValue(direction, out var tile2))
                        {
                            continue;
                        }

                        // skip anything that isn't part of our current processing block. Original one didn't do this unfortunately, which probably cause some massive lag.
                        if (tile2._tileAtmosInfo.FastDone || tile2._tileAtmosInfo.LastQueueCycle != queueCycle)
                        {
                            continue;
                        }

                        eligibleAdjBits |= direction;
                        amtEligibleAdj++;
                    }

                    if (amtEligibleAdj <= 0)
                    {
                        continue;                      // Oof we've painted ourselves into a corner. Bad luck. Next part will handle this.
                    }
                    var molesToMove = tile._tileAtmosInfo.MoleDelta / amtEligibleAdj;
                    foreach (var direction in Cardinal)
                    {
                        if ((eligibleAdjBits & direction) == 0 || !tile._adjacentTiles.TryGetValue(direction, out var tile2))
                        {
                            continue;
                        }
                        tile.AdjustEqMovement(direction, molesToMove);
                        tile._tileAtmosInfo.MoleDelta  -= molesToMove;
                        tile2._tileAtmosInfo.MoleDelta += molesToMove;
                    }
                }

                giverTiles.Clear();
                takerTiles.Clear();

                foreach (var tile in tiles)
                {
                    if (tile._tileAtmosInfo.MoleDelta > 0)
                    {
                        giverTiles.Add(tile);
                    }
                    else
                    {
                        takerTiles.Add(tile);
                    }
                }

                // This is the part that can become O(n^2).
                if (giverTiles.Count < takerTiles.Count)
                {
                    // as an optimization, we choose one of two methods based on which list is smaller. We really want to avoid O(n^2) if we can.
                    var queue = new List <TileAtmosphere>(takerTiles.Count);
                    foreach (var giver in giverTiles)
                    {
                        giver._tileAtmosInfo.CurrentTransferDirection = (Direction)(-1);
                        giver._tileAtmosInfo.CurrentTransferAmount    = 0;
                        var queueCycleSlow = ++_gridAtmosphereComponent.EqualizationQueueCycleControl;
                        queue.Clear();
                        queue.Add(giver);
                        giver._tileAtmosInfo.LastSlowQueueCycle = queueCycleSlow;
                        var queueCount = queue.Count;
                        for (var i = 0; i < queueCount; i++)
                        {
                            if (giver._tileAtmosInfo.MoleDelta <= 0)
                            {
                                break; // We're done here now. Let's not do more work than needed.
                            }
                            var tile = queue[i];
                            foreach (var direction in Cardinal)
                            {
                                if (!tile._adjacentTiles.TryGetValue(direction, out var tile2))
                                {
                                    continue;
                                }
                                if (giver._tileAtmosInfo.MoleDelta <= 0)
                                {
                                    break; // We're done here now. Let's not do more work than needed.
                                }
                                if (tile2?._tileAtmosInfo == null || tile2._tileAtmosInfo.LastQueueCycle != queueCycle)
                                {
                                    continue;
                                }

                                if (tile2._tileAtmosInfo.LastSlowQueueCycle == queueCycleSlow)
                                {
                                    continue;
                                }
                                queue.Add(tile2);
                                queueCount++;
                                tile2._tileAtmosInfo.LastSlowQueueCycle       = queueCycleSlow;
                                tile2._tileAtmosInfo.CurrentTransferDirection = direction.GetOpposite();
                                tile2._tileAtmosInfo.CurrentTransferAmount    = 0;
                                if (tile2._tileAtmosInfo.MoleDelta < 0)
                                {
                                    // This tile needs gas. Let's give it to 'em.
                                    if (-tile2._tileAtmosInfo.MoleDelta > giver._tileAtmosInfo.MoleDelta)
                                    {
                                        // We don't have enough gas!
                                        tile2._tileAtmosInfo.CurrentTransferAmount -= giver._tileAtmosInfo.MoleDelta;
                                        tile2._tileAtmosInfo.MoleDelta             += giver._tileAtmosInfo.MoleDelta;
                                        giver._tileAtmosInfo.MoleDelta              = 0;
                                    }
                                    else
                                    {
                                        // We have enough gas.
                                        tile2._tileAtmosInfo.CurrentTransferAmount += tile2._tileAtmosInfo.MoleDelta;
                                        giver._tileAtmosInfo.MoleDelta             += tile2._tileAtmosInfo.MoleDelta;
                                        tile2._tileAtmosInfo.MoleDelta              = 0;
                                    }
                                }
                            }
                        }

                        // Putting this loop here helps make it O(n^2) over O(n^3)
                        for (var i = queue.Count - 1; i >= 0; i--)
                        {
                            var tile = queue[i];
                            if (tile._tileAtmosInfo.CurrentTransferAmount != 0 &&
                                tile._tileAtmosInfo.CurrentTransferDirection != (Direction)(-1))
                            {
                                tile.AdjustEqMovement(tile._tileAtmosInfo.CurrentTransferDirection, tile._tileAtmosInfo.CurrentTransferAmount);
                                if (tile._adjacentTiles.TryGetValue(tile._tileAtmosInfo.CurrentTransferDirection, out var adjacent))
                                {
                                    adjacent._tileAtmosInfo.CurrentTransferAmount += tile._tileAtmosInfo.CurrentTransferAmount;
                                }
                                tile._tileAtmosInfo.CurrentTransferAmount = 0;
                            }
                        }
                    }
                }
                else
                {
                    var queue = new List <TileAtmosphere>(giverTiles.Count);
                    foreach (var taker in takerTiles)
                    {
                        taker._tileAtmosInfo.CurrentTransferDirection = Direction.Invalid;
                        taker._tileAtmosInfo.CurrentTransferAmount    = 0;
                        var queueCycleSlow = ++_gridAtmosphereComponent.EqualizationQueueCycleControl;
                        queue.Clear();
                        queue.Add(taker);
                        taker._tileAtmosInfo.LastSlowQueueCycle = queueCycleSlow;
                        var queueCount = queue.Count;
                        for (int i = 0; i < queueCount; i++)
                        {
                            if (taker._tileAtmosInfo.MoleDelta >= 0)
                            {
                                break; // We're done here now. Let's not do more work than needed.
                            }
                            var tile = queue[i];
                            foreach (var direction in Cardinal)
                            {
                                if (!tile._adjacentTiles.ContainsKey(direction))
                                {
                                    continue;
                                }
                                var tile2 = tile._adjacentTiles[direction];

                                if (taker._tileAtmosInfo.MoleDelta >= 0)
                                {
                                    break; // We're done here now. Let's not do more work than needed.
                                }
                                if (tile2?._tileAtmosInfo == null || tile2._tileAtmosInfo.LastQueueCycle != queueCycle)
                                {
                                    continue;
                                }
                                if (tile2._tileAtmosInfo.LastSlowQueueCycle == queueCycleSlow)
                                {
                                    continue;
                                }
                                queue.Add(tile2);
                                queueCount++;
                                tile2._tileAtmosInfo.LastSlowQueueCycle       = queueCycleSlow;
                                tile2._tileAtmosInfo.CurrentTransferDirection = direction.GetOpposite();
                                tile2._tileAtmosInfo.CurrentTransferAmount    = 0;

                                if (tile2._tileAtmosInfo.MoleDelta > 0)
                                {
                                    // This tile has gas we can suck, so let's
                                    if (tile2._tileAtmosInfo.MoleDelta > -taker._tileAtmosInfo.MoleDelta)
                                    {
                                        // They have enough gas
                                        tile2._tileAtmosInfo.CurrentTransferAmount -= taker._tileAtmosInfo.MoleDelta;
                                        tile2._tileAtmosInfo.MoleDelta             += taker._tileAtmosInfo.MoleDelta;
                                        taker._tileAtmosInfo.MoleDelta              = 0;
                                    }
                                    else
                                    {
                                        // They don't have enough gas!
                                        tile2._tileAtmosInfo.CurrentTransferAmount += tile2._tileAtmosInfo.MoleDelta;
                                        taker._tileAtmosInfo.MoleDelta             += tile2._tileAtmosInfo.MoleDelta;
                                        tile2._tileAtmosInfo.MoleDelta              = 0;
                                    }
                                }
                            }
                        }

                        for (var i = queue.Count - 1; i >= 0; i--)
                        {
                            var tile = queue[i];
                            if (tile._tileAtmosInfo.CurrentTransferAmount == 0 ||
                                tile._tileAtmosInfo.CurrentTransferDirection == Direction.Invalid)
                            {
                                continue;
                            }
                            tile.AdjustEqMovement(tile._tileAtmosInfo.CurrentTransferDirection, tile._tileAtmosInfo.CurrentTransferAmount);

                            if (tile._adjacentTiles.TryGetValue(tile._tileAtmosInfo.CurrentTransferDirection, out var adjacent))
                            {
                                adjacent._tileAtmosInfo.CurrentTransferAmount += tile._tileAtmosInfo.CurrentTransferAmount;
                            }
                            tile._tileAtmosInfo.CurrentTransferAmount = 0;
                        }
                    }
                }

                foreach (var tile in tiles)
                {
                    tile.FinalizeEq();
                }

                foreach (var tile in tiles)
                {
                    foreach (var direction in Cardinal)
                    {
                        if (!tile._adjacentTiles.TryGetValue(direction, out var tile2))
                        {
                            continue;
                        }
                        if (tile2?.Air?.Compare(Air) == GasMixture.GasCompareResult.NoExchange)
                        {
                            continue;
                        }
                        _gridAtmosphereComponent.AddActiveTile(tile2);
                        break;
                    }
                }
            }
        }
Exemplo n.º 3
0
        public bool Intersects(Box2 box, out float distance, out Vector2 hitPos)
        {
            hitPos   = Vector2.Zero;
            distance = 0;

            var         tmin    = 0.0f;           // set to -FLT_MAX to get first hit on line
            var         tmax    = float.MaxValue; // set to max distance ray can travel (for segment)
            const float epsilon = 1.0E-07f;

            // X axis slab
            {
                if (MathF.Abs(_direction.X) < epsilon)
                {
                    // ray is parallel to this slab, it will never hit unless ray is inside box
                    if (_position.X < MathF.Min(box.Left, box.Right) || _position.X > MathF.Max(box.Left, box.Right))
                    {
                        return(false);
                    }
                }

                // calculate intersection t value of ray with near and far plane of slab
                var ood = 1.0f / _direction.X;
                var t1  = (MathF.Min(box.Left, box.Right) - _position.X) * ood;
                var t2  = (MathF.Max(box.Left, box.Right) - _position.X) * ood;

                // Make t1 be the intersection with near plane, t2 with far plane
                if (t1 > t2)
                {
                    MathHelper.Swap(ref t1, ref t2);
                }

                // Compute the intersection of slab intersection intervals
                tmin = MathF.Max(t1, tmin);
                tmax = MathF.Min(t2, tmax); // Is this Min (SE) or Max(Textbook)

                // Exit with no collision as soon as slab intersection becomes empty
                if (tmin > tmax)
                {
                    return(false);
                }
            }

            // Y axis slab
            {
                if (MathF.Abs(_direction.Y) < epsilon)
                {
                    // ray is parallel to this slab, it will never hit unless ray is inside box
                    if (_position.Y < MathF.Min(box.Top, box.Bottom) || _position.Y > MathF.Max(box.Top, box.Bottom))
                    {
                        return(false);
                    }
                }

                // calculate intersection t value of ray with near and far plane of slab
                var ood = 1.0f / _direction.Y;
                var t1  = (MathF.Min(box.Top, box.Bottom) - _position.Y) * ood;
                var t2  = (MathF.Max(box.Top, box.Bottom) - _position.Y) * ood;

                // Make t1 be the intersection with near plane, t2 with far plane
                if (t1 > t2)
                {
                    MathHelper.Swap(ref t1, ref t2);
                }

                // Compute the intersection of slab intersection intervals
                tmin = MathF.Max(t1, tmin);
                tmax = MathF.Min(t2, tmax); // Is this Min (SE) or Max(Textbook)

                // Exit with no collision as soon as slab intersection becomes empty
                if (tmin > tmax)
                {
                    return(false);
                }
            }

            // Ray intersects all slabs. Return point and intersection t value
            hitPos   = _position + _direction * tmin;
            distance = tmin;
            return(true);
        }