public static AstroRaDec EclipticToJ2000(double l, double b, double jNow)
        {
            //CAA2DCoordinate Galactic = CAACoordinateTransformation::Equatorial2Galactic(CAACoordinateTransformation::DMSToDegrees(17, 48, 59.74), CAACoordinateTransformation::DMSToDegrees(14, 43, 8.2, false));
            COR radec = CT.Ec2Eq(l, b, CAANutation.TrueObliquityOfEcliptic(jNow));

            return(new AstroRaDec(radec.X, radec.Y, 0, false, false));
        }
Exemplo n.º 2
0
//Static methods

    ///////////////////////// Implementation //////////////////////////////////////

    public static double Calculate(double JD)
    {
        double rho        = (JD - 2451545) / 365250;
        double rhosquared = rho * rho;
        double rhocubed   = rhosquared * rho;
        double rho4       = rhocubed * rho;
        double rho5       = rho4 * rho;

        //Calculate the Suns mean longitude
        double L0 = CT.M360(280.4664567 + 360007.6982779 * rho + 0.03032028 * rhosquared + rhocubed / 49931 - rho4 / 15300 - rho5 / 2000000);

        //Calculate the Suns apparent right ascension
        double SunLong    = CAASun.ApparentEclipticLongitude(JD);
        double SunLat     = CAASun.ApparentEclipticLatitude(JD);
        double epsilon    = CAANutation.TrueObliquityOfEcliptic(JD);
        COR    Equatorial = CT.Ec2Eq(SunLong, SunLat, epsilon);

        epsilon = CT.D2R(epsilon);
        double E = L0 - 0.0057183 - Equatorial.X * 15 + CT.DMS2D(0, 0, CAANutation.NutationInLongitude(JD)) * Math.Cos(epsilon);

        if (E > 180)
        {
            E = -(360 - E);
        }
        E *= 4; //Convert to minutes of time

        return(E);
    }
Exemplo n.º 3
0
//Static methods

    //////////////////////////////// Implementation ///////////////////////////////

    public static CAAPhysicalSunDetails Calculate(double JD)
    {
        double theta = CAACoordinateTransformation.MapTo0To360Range((JD - 2398220) * 360 / 25.38);
        double I     = 7.25;
        double K     = 73.6667 + 1.3958333 * (JD - 2396758) / 36525;

        //Calculate the apparent longitude of the sun (excluding the effect of nutation)
        double L           = CAAEarth.EclipticLongitude(JD);
        double R           = CAAEarth.RadiusVector(JD);
        double SunLong     = L + 180 - CAACoordinateTransformation.DMSToDegrees(0, 0, 20.4898 / R);
        double SunLongDash = SunLong + CAACoordinateTransformation.DMSToDegrees(0, 0, CAANutation.NutationInLongitude(JD));

        double epsilon = CAANutation.TrueObliquityOfEcliptic(JD);

        //Convert to radians
        epsilon     = CAACoordinateTransformation.DegreesToRadians(epsilon);
        SunLong     = CAACoordinateTransformation.DegreesToRadians(SunLong);
        SunLongDash = CAACoordinateTransformation.DegreesToRadians(SunLongDash);
        K           = CAACoordinateTransformation.DegreesToRadians(K);
        I           = CAACoordinateTransformation.DegreesToRadians(I);
        theta       = CAACoordinateTransformation.DegreesToRadians(theta);

        double x = Math.Atan(-Math.Cos(SunLong) * Math.Tan(epsilon));
        double y = Math.Atan(-Math.Cos(SunLong - K) * Math.Tan(I));

        CAAPhysicalSunDetails details = new CAAPhysicalSunDetails();

        details.P  = CAACoordinateTransformation.RadiansToDegrees(x + y);
        details.B0 = CAACoordinateTransformation.RadiansToDegrees(Math.Asin(Math.Sin(SunLong - K) * Math.Sin(I)));

        double eta = Math.Atan(Math.Tan(SunLong - K) * Math.Cos(I));

        details.L0 = CAACoordinateTransformation.MapTo0To360Range(CAACoordinateTransformation.RadiansToDegrees(eta - theta));

        return(details);
    }
        public static AstroRaDec GetPlanet(double jDate, EO planetIn, double locLat, double locLong, double locHeight)
        {
            int planet = (int)planetIn;

//C++ TO C# CONVERTER NOTE: This static local variable declaration (not allowed in C#) has been moved just prior to the method:
//			static CAAGalileanMoonsDetails galDetails;
//C++ TO C# CONVERTER NOTE: This static local variable declaration (not allowed in C#) has been moved just prior to the method:
//			static CAAEllipticalPlanetaryDetails jupDetails;
//C++ TO C# CONVERTER NOTE: This static local variable declaration (not allowed in C#) has been moved just prior to the method:
//			static CAAPhysicalJupiterDetails jupPhisical;
//C++ TO C# CONVERTER NOTE: This static local variable declaration (not allowed in C#) has been moved just prior to the method:
//			static double jDateLast = 0;

            locLong = -locLong;
            if (planet < 9)
            {
                EPD Details   = ELL.Calculate(jDate, planetIn);
                COR corrected = CAAParallax.Equatorial2Topocentric(Details.ApparentGeocentricRA, Details.ApparentGeocentricDeclination, Details.ApparentGeocentricDistance, locLong, locLat, locHeight, jDate);
                return(new AstroRaDec(corrected.X, corrected.Y, Details.ApparentGeocentricDistance, false, false));
            }
            else if (planet == 9)
            {
                double lat       = CAAMoon.EclipticLatitude(jDate);
                double lng       = CAAMoon.EclipticLongitude(jDate);
                double dis       = CAAMoon.RadiusVector(jDate) / 149598000;
                double epsilon   = CAANutation.TrueObliquityOfEcliptic(jDate);
                COR    d         = CT.Ec2Eq(lng, lat, epsilon);
                COR    corrected = CAAParallax.Equatorial2Topocentric(d.X, d.Y, dis, locLong, locLat, locHeight, jDate);

                return(new AstroRaDec(corrected.X, corrected.Y, dis, false, false));
            }
            else
            {
                if (jDate != jDateLast)
                {
                    jupDetails  = ELL.Calculate(jDate, (EO)4);
                    jupPhisical = CAAPhysicalJupiter.Calculate(jDate);
                    COR corrected = CAAParallax.Equatorial2Topocentric(jupDetails.ApparentGeocentricRA, jupDetails.ApparentGeocentricDeclination, jupDetails.ApparentGeocentricDistance, locLong, locLat, locHeight, jDate);
                    jupDetails.ApparentGeocentricRA          = corrected.X;
                    jupDetails.ApparentGeocentricDeclination = corrected.Y;
                    galDetails = GM.Calculate(jDate);
                    jDateLast  = jDate;
                }


                double jupiterDiameter = 0.000954501;
                double scale           = (Math.Atan(.5 * (jupiterDiameter / jupDetails.ApparentGeocentricDistance))) / 3.1415927 * 180;

                double raScale = (scale / Math.Cos(jupDetails.ApparentGeocentricDeclination / 180.0 * 3.1415927)) / 15;

                double xMoon    = 0;
                double yMoon    = 0;
                double zMoon    = 0;
                bool   shadow   = false;
                bool   eclipsed = false;

                switch (planet)
                {
                case 10:                         // IO
                    xMoon    = galDetails.Satellite1.ApparentRectangularCoordinates.X;
                    yMoon    = galDetails.Satellite1.ApparentRectangularCoordinates.Y;
                    zMoon    = galDetails.Satellite1.ApparentRectangularCoordinates.Z;
                    eclipsed = galDetails.Satellite1.bInEclipse;
                    shadow   = galDetails.Satellite1.bInShadowTransit;
                    break;

                case 11:                         //Europa
                    xMoon    = galDetails.Satellite2.ApparentRectangularCoordinates.X;
                    yMoon    = galDetails.Satellite2.ApparentRectangularCoordinates.Y;
                    zMoon    = galDetails.Satellite2.ApparentRectangularCoordinates.Z;
                    eclipsed = galDetails.Satellite2.bInEclipse;
                    shadow   = galDetails.Satellite2.bInShadowTransit;
                    break;

                case 12:                         //Ganymede
                    xMoon    = galDetails.Satellite3.ApparentRectangularCoordinates.X;
                    yMoon    = galDetails.Satellite3.ApparentRectangularCoordinates.Y;
                    zMoon    = galDetails.Satellite3.ApparentRectangularCoordinates.Z;
                    eclipsed = galDetails.Satellite3.bInEclipse;
                    shadow   = galDetails.Satellite3.bInShadowTransit;
                    break;

                case 13:                         //Callisto
                    xMoon    = galDetails.Satellite4.ApparentRectangularCoordinates.X;
                    yMoon    = galDetails.Satellite4.ApparentRectangularCoordinates.Y;
                    zMoon    = galDetails.Satellite4.ApparentRectangularCoordinates.Z;
                    eclipsed = galDetails.Satellite4.bInEclipse;
                    shadow   = galDetails.Satellite4.bInShadowTransit;
                    break;

                case 14:                         // IO Shadow
                    xMoon  = galDetails.Satellite1.ApparentShadowRectangularCoordinates.X;
                    yMoon  = galDetails.Satellite1.ApparentShadowRectangularCoordinates.Y;
                    zMoon  = galDetails.Satellite1.ApparentShadowRectangularCoordinates.Z * .9;
                    shadow = galDetails.Satellite1.bInShadowTransit;
                    break;

                case 15:                         //Europa Shadow
                    xMoon  = galDetails.Satellite2.ApparentShadowRectangularCoordinates.X;
                    yMoon  = galDetails.Satellite2.ApparentShadowRectangularCoordinates.Y;
                    zMoon  = galDetails.Satellite2.ApparentShadowRectangularCoordinates.Z * .9;
                    shadow = galDetails.Satellite2.bInShadowTransit;
                    break;

                case 16:                         //Ganymede Shadow
                    xMoon  = galDetails.Satellite3.ApparentShadowRectangularCoordinates.X;
                    yMoon  = galDetails.Satellite3.ApparentShadowRectangularCoordinates.Y;
                    zMoon  = galDetails.Satellite3.ApparentShadowRectangularCoordinates.Z * .9;
                    shadow = galDetails.Satellite3.bInShadowTransit;
                    break;

                case 17:                         //Callisto Shadow
                    xMoon  = galDetails.Satellite4.ApparentShadowRectangularCoordinates.X;
                    yMoon  = galDetails.Satellite4.ApparentShadowRectangularCoordinates.Y;
                    zMoon  = galDetails.Satellite4.ApparentShadowRectangularCoordinates.Z * .9;
                    shadow = galDetails.Satellite4.bInShadowTransit;
                    break;
                }

                double xTemp;
                double yTemp;
                double radians = jupPhisical.P / 180.0 * 3.1415927;
                xTemp = xMoon * Math.Cos(radians) - yMoon * Math.Sin(radians);
                yTemp = xMoon * Math.Sin(radians) + yMoon * Math.Cos(radians);
                xMoon = xTemp;
                yMoon = yTemp;

                return(new AstroRaDec(jupDetails.ApparentGeocentricRA - (xMoon * raScale), jupDetails.ApparentGeocentricDeclination + yMoon * scale, jupDetails.ApparentGeocentricDistance + (zMoon * jupiterDiameter / 2), shadow, eclipsed));
            }
        }
//Static methods

    //////////////////////////////// Implementation ///////////////////////////////

    public static CAASaturnRingDetails Calculate(double JD)
    {
        //What will be the return value
        CAASaturnRingDetails details = new CAASaturnRingDetails();

        double T  = (JD - 2451545) / 36525;
        double T2 = T * T;

        //Step 1. Calculate the inclination of the plane of the ring and the longitude of the ascending node referred to the ecliptic and mean equinox of the date
        double i        = 28.075216 - 0.012998 * T + 0.000004 * T2;
        double irad     = CT.D2R(i);
        double omega    = 169.508470 + 1.394681 * T + 0.000412 * T2;
        double omegarad = CT.D2R(omega);

        //Step 2. Calculate the heliocentric longitude, latitude and radius vector of the Earth in the FK5 system
        double l0 = CAAEarth.EclipticLongitude(JD);
        double b0 = CAAEarth.EclipticLatitude(JD);

        l0 += CAAFK5.CorrectionInLongitude(l0, b0, JD);
        double l0rad = CT.D2R(l0);

        b0 += CAAFK5.CorrectionInLatitude(l0, JD);
        double b0rad = CT.D2R(b0);
        double R     = CAAEarth.RadiusVector(JD);

        //Step 3. Calculate the corresponding coordinates l,b,r for Saturn but for the instance t-lightraveltime
        double DELTA = 9;
        double PreviousEarthLightTravelTime = 0;
        double EarthLightTravelTime         = ELL.DistanceToLightTime(DELTA);
        double JD1      = JD - EarthLightTravelTime;
        bool   bIterate = true;
        double x        = 0;
        double y        = 0;
        double z        = 0;
        double l        = 0;
        double b        = 0;
        double r        = 0;

        while (bIterate)
        {
            //Calculate the position of Saturn
            l  = CAASaturn.EclipticLongitude(JD1);
            b  = CAASaturn.EclipticLatitude(JD1);
            l += CAAFK5.CorrectionInLongitude(l, b, JD1);
            b += CAAFK5.CorrectionInLatitude(l, JD1);

            double lrad = CT.D2R(l);
            double brad = CT.D2R(b);
            r = CAASaturn.RadiusVector(JD1);

            //Step 4
            x     = r * Math.Cos(brad) * Math.Cos(lrad) - R * Math.Cos(l0rad);
            y     = r * Math.Cos(brad) * Math.Sin(lrad) - R * Math.Sin(l0rad);
            z     = r * Math.Sin(brad) - R * Math.Sin(b0rad);
            DELTA = Math.Sqrt(x * x + y * y + z * z);
            EarthLightTravelTime = ELL.DistanceToLightTime(DELTA);

            //Prepare for the next loop around
            bIterate = (Math.Abs(EarthLightTravelTime - PreviousEarthLightTravelTime) > 2E-6); //2E-6 corresponds to 0.17 of a second
            if (bIterate)
            {
                JD1 = JD - EarthLightTravelTime;
                PreviousEarthLightTravelTime = EarthLightTravelTime;
            }
        }

        //Step 5. Calculate Saturn's geocentric Longitude and Latitude
        double lambda = Math.Atan2(y, x);
        double beta   = Math.Atan2(z, Math.Sqrt(x * x + y * y));

        //Step 6. Calculate B, a and b
        details.B = Math.Asin(Math.Sin(irad) * Math.Cos(beta) * Math.Sin(lambda - omegarad) - Math.Cos(irad) * Math.Sin(beta));
        details.a = 375.35 / DELTA;
        details.b = details.a * Math.Sin(Math.Abs(details.B));
        details.B = CT.R2D(details.B);

        //Step 7. Calculate the longitude of the ascending node of Saturn's orbit
        double N        = 113.6655 + 0.8771 * T;
        double Nrad     = CT.D2R(N);
        double ldash    = l - 0.01759 / r;
        double ldashrad = CT.D2R(ldash);
        double bdash    = b - 0.000764 * Math.Cos(ldashrad - Nrad) / r;
        double bdashrad = CT.D2R(bdash);

        //Step 8. Calculate Bdash
        details.Bdash = CT.R2D(Math.Asin(Math.Sin(irad) * Math.Cos(bdashrad) * Math.Sin(ldashrad - omegarad) - Math.Cos(irad) * Math.Sin(bdashrad)));

        //Step 9. Calculate DeltaU
        double U1 = Math.Atan2(Math.Sin(irad) * Math.Sin(bdashrad) + Math.Cos(irad) * Math.Cos(bdashrad) * Math.Sin(ldashrad - omegarad), Math.Cos(bdashrad) * Math.Cos(ldashrad - omegarad));
        double U2 = Math.Atan2(Math.Sin(irad) * Math.Sin(beta) + Math.Cos(irad) * Math.Cos(beta) * Math.Sin(lambda - omegarad), Math.Cos(beta) * Math.Cos(lambda - omegarad));

        details.DeltaU = CT.R2D(Math.Abs(U1 - U2));

        //Step 10. Calculate the Nutations
        double Obliquity           = CAANutation.TrueObliquityOfEcliptic(JD);
        double NutationInLongitude = CAANutation.NutationInLongitude(JD);

        //Step 11. Calculate the Ecliptical longitude and latitude of the northern pole of the ring plane
        double lambda0 = omega - 90;
        double beta0   = 90 - i;

        //Step 12. Correct lambda and beta for the aberration of Saturn
        lambda += CT.D2R(0.005693 * Math.Cos(l0rad - lambda) / Math.Cos(beta));
        beta   += CT.D2R(0.005693 * Math.Sin(l0rad - lambda) * Math.Sin(beta));

        //Step 13. Add nutation in longitude to lambda0 and lambda
        //double NLrad = CAACoordinateTransformation::DegreesToRadians(NutationInLongitude/3600);
        lambda   = CT.R2D(lambda);
        lambda  += NutationInLongitude / 3600;
        lambda   = CT.M360(lambda);
        lambda0 += NutationInLongitude / 3600;
        lambda0  = CT.M360(lambda0);

        //Step 14. Convert to equatorial coordinates
        beta = CT.R2D(beta);
        COR    GeocentricEclipticSaturn = CT.Ec2Eq(lambda, beta, Obliquity);
        double alpha = CT.H2R(GeocentricEclipticSaturn.X);
        double delta = CT.D2R(GeocentricEclipticSaturn.Y);
        COR    GeocentricEclipticNorthPole = CT.Ec2Eq(lambda0, beta0, Obliquity);
        double alpha0 = CT.H2R(GeocentricEclipticNorthPole.X);
        double delta0 = CT.D2R(GeocentricEclipticNorthPole.Y);

        //Step 15. Calculate the Position angle
        details.P = CT.R2D(Math.Atan2(Math.Cos(delta0) * Math.Sin(alpha0 - alpha), Math.Sin(delta0) * Math.Cos(delta) - Math.Cos(delta0) * Math.Sin(delta) * Math.Cos(alpha0 - alpha)));

        return(details);
    }
Exemplo n.º 6
0
    public static EPD Calculate(double JD, EO @object)
    {
        //What will the the return value
        EPD details = new EPD();

        double JD0   = JD;
        double L0    = 0;
        double B0    = 0;
        double R0    = 0;
        double cosB0 = 0;

        if (@object != EO.SUN)
        {
            L0    = CAAEarth.EclipticLongitude(JD0);
            B0    = CAAEarth.EclipticLatitude(JD0);
            R0    = CAAEarth.RadiusVector(JD0);
            L0    = CT.D2R(L0);
            B0    = CT.D2R(B0);
            cosB0 = Math.Cos(B0);
        }


        //Calculate the initial values
        double L = 0;
        double B = 0;
        double R = 0;

        double Lrad;
        double Brad;
        double cosB;
        double cosL;
        double x;
        double y;
        double z;
        bool   bRecalc      = true;
        bool   bFirstRecalc = true;
        double LPrevious    = 0;
        double BPrevious    = 0;
        double RPrevious    = 0;

        while (bRecalc)
        {
            switch (@object)
            {
            case EO.SUN:
            {
                L = CAASun.GeometricEclipticLongitude(JD0);
                B = CAASun.GeometricEclipticLatitude(JD0);
                R = CAAEarth.RadiusVector(JD0);
                break;
            }

            case EO.MERCURY:
            {
                L = CAAMercury.EclipticLongitude(JD0);
                B = CAAMercury.EclipticLatitude(JD0);
                R = CAAMercury.RadiusVector(JD0);
                break;
            }

            case EO.VENUS:
            {
                L = CAAVenus.EclipticLongitude(JD0);
                B = CAAVenus.EclipticLatitude(JD0);
                R = CAAVenus.RadiusVector(JD0);
                break;
            }

            case EO.MARS:
            {
                L = CAAMars.EclipticLongitude(JD0);
                B = CAAMars.EclipticLatitude(JD0);
                R = CAAMars.RadiusVector(JD0);
                break;
            }

            case EO.JUPITER:
            {
                L = CAAJupiter.EclipticLongitude(JD0);
                B = CAAJupiter.EclipticLatitude(JD0);
                R = CAAJupiter.RadiusVector(JD0);
                break;
            }

            case EO.SATURN:
            {
                L = CAASaturn.EclipticLongitude(JD0);
                B = CAASaturn.EclipticLatitude(JD0);
                R = CAASaturn.RadiusVector(JD0);
                break;
            }

            case EO.URANUS:
            {
                L = CAAUranus.EclipticLongitude(JD0);
                B = CAAUranus.EclipticLatitude(JD0);
                R = CAAUranus.RadiusVector(JD0);
                break;
            }

            case EO.NEPTUNE:
            {
                L = CAANeptune.EclipticLongitude(JD0);
                B = CAANeptune.EclipticLatitude(JD0);
                R = CAANeptune.RadiusVector(JD0);
                break;
            }

            case EO.PLUTO:
            {
                L = CAAPluto.EclipticLongitude(JD0);
                B = CAAPluto.EclipticLatitude(JD0);
                R = CAAPluto.RadiusVector(JD0);
                break;
            }

            default:
            {
                Debug.Assert(false);
                break;
            }
            }

            if (!bFirstRecalc)
            {
                bRecalc   = ((Math.Abs(L - LPrevious) > 0.00001) || (Math.Abs(B - BPrevious) > 0.00001) || (Math.Abs(R - RPrevious) > 0.000001));
                LPrevious = L;
                BPrevious = B;
                RPrevious = R;
            }
            else
            {
                bFirstRecalc = false;
            }



            //Calculate the new value
            if (bRecalc)
            {
                double distance = 0;
                if (@object != EO.SUN)
                {
                    Lrad     = CT.D2R(L);
                    Brad     = CT.D2R(B);
                    cosB     = Math.Cos(Brad);
                    cosL     = Math.Cos(Lrad);
                    x        = R * cosB * cosL - R0 * cosB0 * Math.Cos(L0);
                    y        = R * cosB * Math.Sin(Lrad) - R0 * cosB0 * Math.Sin(L0);
                    z        = R * Math.Sin(Brad) - R0 * Math.Sin(B0);
                    distance = Math.Sqrt(x * x + y * y + z * z);
                }
                else
                {
                    distance = R; //Distance to the sun from the earth is in fact the radius vector
                }
                //Prepare for the next loop around
                JD0 = JD - ELL.DistanceToLightTime(distance);
            }
        }

        Lrad = CT.D2R(L);
        Brad = CT.D2R(B);
        cosB = Math.Cos(Brad);
        cosL = Math.Cos(Lrad);
        x    = R * cosB * cosL - R0 * cosB0 * Math.Cos(L0);
        y    = R * cosB * Math.Sin(Lrad) - R0 * cosB0 * Math.Sin(L0);
        z    = R * Math.Sin(Brad) - R0 * Math.Sin(B0);
        double x2 = x * x;
        double y2 = y * y;

        details.ApparentGeocentricLatitude  = CT.R2D(Math.Atan2(z, Math.Sqrt(x2 + y2)));
        details.ApparentGeocentricDistance  = Math.Sqrt(x2 + y2 + z * z);
        details.ApparentGeocentricLongitude = CT.M360(CT.R2D(Math.Atan2(y, x)));
        details.ApparentLightTime           = ELL.DistanceToLightTime(details.ApparentGeocentricDistance);

        //Adjust for Aberration
        COR Aberration = ABR.EclipticAberration(details.ApparentGeocentricLongitude, details.ApparentGeocentricLatitude, JD);

        details.ApparentGeocentricLongitude += Aberration.X;
        details.ApparentGeocentricLatitude  += Aberration.Y;

        //convert to the FK5 system
        double DeltaLong = CAAFK5.CorrectionInLongitude(details.ApparentGeocentricLongitude, details.ApparentGeocentricLatitude, JD);

        details.ApparentGeocentricLatitude  += CAAFK5.CorrectionInLatitude(details.ApparentGeocentricLongitude, JD);
        details.ApparentGeocentricLongitude += DeltaLong;

        //Correct for nutation
        double NutationInLongitude = CAANutation.NutationInLongitude(JD);
        double Epsilon             = CAANutation.TrueObliquityOfEcliptic(JD);

        details.ApparentGeocentricLongitude += CT.DMS2D(0, 0, NutationInLongitude);

        //Convert to RA and Dec
        COR ApparentEqu = CT.Ec2Eq(details.ApparentGeocentricLongitude, details.ApparentGeocentricLatitude, Epsilon);

        details.ApparentGeocentricRA          = ApparentEqu.X;
        details.ApparentGeocentricDeclination = ApparentEqu.Y;

        return(details);
    }
Exemplo n.º 7
0
        public static AstroRaDec EclipticToJ2000(double l, double b, double jNow)
        {
            CAA2DCoordinate radec = CAACoordinateTransformation.Ecliptic2Equatorial(l, b, CAANutation.TrueObliquityOfEcliptic(jNow));

            return(new AstroRaDec(radec.X, radec.Y, 0, false, false));
        }