Exemplo n.º 1
0
        /// <summary>
        ///   Saves this model to disk using LibSVM's model format.
        /// </summary>
        ///
        /// <param name="stream">The stream where the file should be written.</param>
        ///
        public void Save(Stream stream)
        {
            StreamWriter writer = new StreamWriter(stream);

            writer.WriteLine("solver_type " + Solver.GetDescription().ToUpperInvariant());
            writer.WriteLine("nr_class " + Classes);

            writer.Write("label");
            for (int i = 0; i < Labels.Length; i++)
            {
                writer.Write(" " + Labels[i]);
            }
            writer.WriteLine();

            writer.WriteLine("nr_feature " + Dimension);
            writer.WriteLine("bias " + Bias.ToString("G17", CultureInfo.InvariantCulture));
            writer.WriteLine("w");

            for (int i = 0; i < Weights.Length; i++)
            {
                writer.WriteLine(Weights[i].ToString("G17", CultureInfo.InvariantCulture) + " ");
            }

            writer.Flush();
        }
Exemplo n.º 2
0
        public void Save(Stream s)
        {
            XmlWriter w = null;

            try
            {
                XmlWriterSettings settings = new XmlWriterSettings();
                settings.Indent           = true;
                settings.ConformanceLevel = ConformanceLevel.Fragment;
                w = XmlWriter.Create(s, settings);
                w.WriteStartElement("ColorMap");
                w.WriteAttributeString("Type", Type.ToString());
                w.WriteAttributeString("Bias", Bias.ToString());
                w.WriteAttributeString("Contrast", Contrast.ToString());
                SaveCore(w);
                w.WriteEndElement();
            }
            finally
            {
                if (w != null)
                {
                    w.Close();
                }
            }
        }
Exemplo n.º 3
0
        /// <summary>
        /// 通过I2C获取温度,Vcc,Bias,TxPower
        /// </summary>
        void GetParas()
        {
            //AOH 读取SN
            //A2H
            double      temp, vcc, txPower, bais;
            short       cache  = 0;
            ushort      ucache = 0;
            List <byte> data   = TranBase.MyI2C_ReadA2HByte(SerBuf, Port, 96, 10);

            //Temp 96,97
            cache            = DigitTransform(data[0], data[1]);
            temp             = (double)cache / 256;
            Temp             = temp;
            TestingPara.Temp = Temp.ToString();
            //Vcc 98,99
            ucache          = UDigitTransform(data[2], data[3]);
            vcc             = (double)ucache / 10000; //V
            Vcc             = vcc;
            TestingPara.Vcc = Vcc.ToString();

            //Bais 100,101
            ucache           = UDigitTransform(data[4], data[5]);
            bais             = (double)ucache / 500;
            Bias             = bais;
            TestingPara.Bias = Bias.ToString();
            //TxPower 102,103
            ucache  = UDigitTransform(data[6], data[7]);
            txPower = (double)ucache / 10000; //mW
            //取两位有效数字
            TxPower             = Math.Round((Math.Log10(txPower) * 10), 2);
            TestingPara.TxPower = TxPower.ToString();
        }
Exemplo n.º 4
0
        private Task SetElectrometer(ExcelJob job)
        {
            return(Task.Run(() =>
            {
                if (el == null)
                {
                    MessageBox.Show("No electrometer available!"); return;
                }

                ////ZERO
                //if (!el.IsZeroed() && !alreadyZeroed)
                //{
                //    logger.Log("Zeroing electrometer...");
                //    await el.Zero();
                //}

                //SET RANGE
                if (el.GetRange() != Autodrive.Electrometers.Enums.Range.HIGH)
                {
                    el.SetRange(Autodrive.Electrometers.Enums.Range.HIGH);
                }

                //SET BIAS
                Bias reqBias = Bias.UNKNOWN;
                var currentBias = this.el.GetBias();
                switch (job.Bias)
                {
                case -100:
                case -300: reqBias = Bias.NEG_100PERC; break;

                case -50:
                case -150: reqBias = Bias.NEG_50PERC; break;

                case 0: reqBias = Bias.ZERO; break;

                case 50:
                case 150: reqBias = Bias.POS_50PERC; break;

                case 100:
                case 300: reqBias = Bias.POS_100PERC; break;
                }

                if (reqBias != currentBias)
                {
                    logger.Log($"Settng Bias {reqBias.ToString()} + 10 sec delay");
                    el.SetBias(reqBias);
                    Thread.Sleep(10000);
                }

                //SET MODE
                if (el.GetMode() != MeasureMode.CHARGE)
                {
                    el.SetMode(MeasureMode.CHARGE);
                }
                ;
                el.StopMeasurement();
                el.Reset();
            }));
        }
Exemplo n.º 5
0
        public string ToString()
        {
            string content = "Input vector length: <" + InputLength + ">" + Environment.NewLine;

            content += "Output classes: <" + Classes + ">" + Environment.NewLine;
            content += "Hidden layers: <" + HiddenLayers + ">" + Environment.NewLine;
            string hlpString = "";

            foreach (var i in NeuronPerLayer)
            {
                hlpString += i.ToString() + ",";
            }
            content += "Neurons in each layer: <" + hlpString + ">" + Environment.NewLine;
            content += "Bias: <" + Bias.ToString() + ">" + Environment.NewLine;
            content += "Seed: <" + Seed + ">" + Environment.NewLine;
            content += "Iterations: <" + Iterations + ">" + Environment.NewLine;
            content += "Learning factor: <" + LearningFactor + ">" + Environment.NewLine;
            return(content);
        }
Exemplo n.º 6
0
        /// <summary>
        ///   Saves this model to disk using LibSVM's model format.
        /// </summary>
        ///
        /// <param name="stream">The stream where the file should be written.</param>
        ///
        public void Save(Stream stream)
        {
            StreamWriter writer = new StreamWriter(stream);

            writer.WriteLine("solver_type " + Solver.GetDescription().ToUpperInvariant());
            writer.WriteLine("nr_class " + NumberOfClasses);

            writer.Write("label");
            for (int i = 0; i < Labels.Length; i++)
            {
                writer.Write(" " + Labels[i]);
            }
            writer.WriteLine();

            writer.WriteLine("nr_feature " + NumberOfInputs);
            writer.WriteLine("bias " + Bias.ToString("G17", System.Globalization.CultureInfo.InvariantCulture));

            if (this.Vectors == null)
            {
                writer.WriteLine("w");

                for (int i = 0; i < Weights.Length; i++)
                {
                    writer.WriteLine(Weights[i].ToString("G17", System.Globalization.CultureInfo.InvariantCulture) + " ");
                }
            }
            else
            {
                writer.WriteLine("SV");

                for (int i = 0; i < Vectors.Length; i++)
                {
                    string alpha  = Weights[i].ToString("G17", System.Globalization.CultureInfo.InvariantCulture);
                    string values = Sparse.FromDense(Vectors[i]).ToString();
                    writer.WriteLine(alpha + " " + values);
                }
            }

            writer.Flush();
        }
Exemplo n.º 7
0
        public Perceptron Treinar(bool verbose = false)
        {
            Console.WriteLine($"Treinando perceptron usando os {QuantTreinamento} primeiros exemplos");
            int epoca = 0, erroTotal;
            var paraTreinar = Exemplos.Take(QuantTreinamento).ToArray();
            var início      = DateTime.Now;

            while (true)
            {
                erroTotal = 0;
                foreach (var exemplo in paraTreinar)
                {
                    var erro = Sinal(exemplo.Saída) - Sinal(Testar(exemplo.Normalizados));
                    if (verbose)
                    {
                        Console.WriteLine($"    Acertou: {(erro == 0 ? "Sim" : "Não")}: {exemplo.ToString(this)}");
                    }
                    Bias += Magnitude * erro;
                    for (int i = 0; i < Entradas; i++)
                    {
                        Pesos[i] += Magnitude * erro * exemplo.Normalizados[i];
                    }
                    erroTotal += erro == 0 ? 0 : 1;
                }
                if (verbose)
                {
                    Console.WriteLine($"Época {epoca}, Total de erros: {erroTotal}\nBias: {Bias.ToString("0.00")}\nPesos: {string.Join(", ", Pesos.Select(p=>p.ToString("0.00")))}");
                }
                if (erroTotal == 0)
                {
                    break;
                }
                else
                {
                    epoca++;
                }
            }
            Console.WriteLine($"Treinamento completo! Levou {epoca} épocas e {(DateTime.Now - início).TotalSeconds} segundos.");
            return(this);
        }
Exemplo n.º 8
0
        static int trainingSetNumber         = 2; //Applies to aproximation variant
        #endregion

        public static void Main(String[] args)
        {
            Random gen = new Random();

            if (variant == Variant.transformation)
            {
                double succesfulOutputsCount = 0;
                double totalOutputsCount     = 4 * executionsCount;
                for (int counter = 1; counter <= executionsCount; counter++)
                {
                    string          fileName         = variant.ToString() + "_" + bias.ToString() + "_Execution" + counter.ToString() + "EpochsDiffrences.xml";
                    StreamWriter    sw               = new StreamWriter(fileName);
                    XmlSerializer   xs               = new XmlSerializer(typeof(List <double>));
                    List <double>   EpochsMSEs       = new List <double>();
                    double[][]      testSamples      = LoadTrainingDataFromFileTransformation();
                    double[][]      finalInputOutput = null;
                    List <double[]> trainingSet      = new List <double[]>();


                    RefillTrainingSet(trainingSet, testSamples);


                    Neuron[] hiddenLayer = null;
                    Neuron[] outputLayer = null;
                    InitalizeLayers(ref hiddenLayer, ref outputLayer);
                    for (int i = 1; i <= epochsCount; i++)
                    {
                        double EpochMSE       = 0;
                        double IterationError = 0;
                        EpochMSE = 0;
                        for (int j = trainingSet.Count; j > 0; j--)
                        {
                            IterationError = 0;
                            int      randomIndex = gen.Next(j);
                            double[] inputs1     = trainingSet[randomIndex];
                            double[] inputs2     = new double[hiddenLayerCount];
                            foreach (Neuron n in hiddenLayer)
                            {
                                n.Inputs = inputs1;
                            }
                            for (int k = 0; k < hiddenLayer.Length; k++)
                            {
                                inputs2[k] = hiddenLayer[k].Output();
                            }
                            foreach (Neuron n in outputLayer)
                            {
                                n.Inputs = inputs2;
                            }

                            double[] outputsErrors = new double[4];
                            for (int k = 0; k < outputLayer.Length; k++)
                            {
                                outputsErrors[k] = (inputs1[k] - outputLayer[k].Output());
                                IterationError  += Pow(outputsErrors[k], 2);
                            }
                            for (int k = 0; k < outputLayer.Length; k++)
                            {
                                outputLayer[k].Error = Sigm.FunctionDerivative(outputLayer[k].Output()) * (outputsErrors[k]);
                            }

                            for (int k = 0; k < hiddenLayer.Length; k++)
                            {
                                double value = 0;
                                for (int l = 0; l < hiddenLayer[k].Weights.Length; l++)
                                {
                                    value += Sigm.FunctionDerivative(hiddenLayer[k].Output()) * outputLayer[l].Error * outputLayer[l].Weights[k];
                                }
                                hiddenLayer[k].Error = value;
                            }
                            for (int k = 0; k < outputLayer.Length; k++)
                            {
                                outputLayer[k].UpdateWeights();
                            }
                            for (int k = 0; k < hiddenLayer.Length; k++)
                            {
                                hiddenLayer[k].UpdateWeights();
                            }
                            trainingSet.RemoveAt(randomIndex);
                            EpochMSE += IterationError;
                        }
                        EpochMSE /= 4;
                        RefillTrainingSet(trainingSet, testSamples);
                        if (i % 20 == 1)
                        {
                            EpochsMSEs.Add(EpochMSE);
                        }
                    }



                    for (int i = 0; i < 4; i++)
                    {
                        int      maxIndex = 0;
                        double[] inputs1  = trainingSet[i];
                        double[] inputs2  = new double[hiddenLayerCount];
                        foreach (Neuron n in hiddenLayer)
                        {
                            n.Inputs = inputs1;
                        }
                        for (int j = 0; j < hiddenLayer.Length; j++)
                        {
                            inputs2[j] = hiddenLayer[j].Output();
                        }
                        foreach (Neuron n in outputLayer)
                        {
                            n.Inputs = inputs2;
                        }
                        for (int j = 0; j < outputLayer.Length; j++)
                        {
                            if (outputLayer[j].Output() > outputLayer[maxIndex].Output())
                            {
                                maxIndex = j;
                            }
                        }
                        List <int> indexes = GetNumbers(4);
                        indexes.Remove(maxIndex);
                        for (int j = 0; j < 4; j++)
                        {
                            WriteLine($"Input: {trainingSet[i][j]}  Output: {outputLayer[j].Output()}");
                        }
                        WriteLine();
                        if (outputLayer[indexes[0]].Output() < 0.5 && outputLayer[indexes[1]].Output() < 0.5 && outputLayer[indexes[2]].Output() < 0.5 && outputLayer[maxIndex].Output() > 0.5)
                        {
                            succesfulOutputsCount++;
                        }
                    }
                    WriteLine("================================================");
                    ReadKey();
                    xs.Serialize(sw, EpochsMSEs);
                }
                WriteLine($"Successful: {succesfulOutputsCount}  Total: {totalOutputsCount}");
                XmlSerializer xs1 = new XmlSerializer(typeof(double[]));
                using (StreamWriter sw1 = new StreamWriter(variant.ToString() + "_" + bias.ToString() + "_Execution_stats.xml"))
                {
                    xs1.Serialize(sw1, new double[] { succesfulOutputsCount, totalOutputsCount });
                }
                ReadKey();
            }


            if (variant == Variant.aproximation)
            {
                for (int counter = 1; counter <= executionsCount; counter++)
                {
                    StreamWriter             sw                  = new StreamWriter(variant.ToString() + "_" + bias.ToString() + "_Execution" + counter.ToString() + "EpochsDiffrences.xml");
                    XmlSerializer            xs                  = new XmlSerializer(typeof(List <ApproximationData>));
                    List <ApproximationData> toSerialize         = new List <ApproximationData>();
                    List <double>            trainingDataInputs  = new List <double>();
                    List <double>            trainingDataOutputs = new List <double>();
                    List <double>            testingDataInputs   = new List <double>();
                    List <double>            testingDataOutputs  = new List <double>();
                    LoadTrainingDataFromFileAproximation(trainingDataInputs, trainingDataOutputs, testingDataInputs, testingDataOutputs);


                    Neuron[] hiddenLayer = new Neuron[hiddenLayerCount];
                    Neuron[] outputLayer = new Neuron[1];
                    for (int i = 0; i < hiddenLayer.Length; i++)
                    {
                        hiddenLayer[i] = new Neuron(1, 1);
                        hiddenLayer[i].RandomizeValues();
                    }
                    outputLayer[0] = new Neuron(hiddenLayerCount, 2);
                    outputLayer[0].RandomizeValues();
                    double TrainingMSE = 0;


                    for (int i = 1; i <= epochsCount; i++)
                    {
                        List <int>    numbers     = GetNumbers(trainingDataInputs.Count);
                        List <double> finalOutput = new List <double>();
                        TrainingMSE = 0;
                        for (int j = 0; j < trainingDataInputs.Count; j++)
                        {
                            int randomIndex = gen.Next(numbers.Count);
                            numbers.RemoveAt(randomIndex);
                            double[] hiddenLayerInputs = new double[] { trainingDataInputs[randomIndex] };
                            double[] outputLayerInputs = new double[hiddenLayerCount];


                            foreach (Neuron n in hiddenLayer)
                            {
                                n.Inputs = hiddenLayerInputs;
                            }
                            for (int k = 0; k < hiddenLayer.Length; k++)
                            {
                                outputLayerInputs[k] = hiddenLayer[k].Output();
                            }
                            outputLayer[0].Inputs = outputLayerInputs;


                            double diffrence = 0;
                            diffrence    = trainingDataOutputs[randomIndex] - outputLayer[0].Output();
                            TrainingMSE += Pow(diffrence, 2);

                            outputLayer[0].Error = Linear.FunctionDerivative(outputLayer[0].Output()) * diffrence;
                            for (int k = 0; k < hiddenLayer.Length; k++)
                            {
                                hiddenLayer[k].Error = Sigm.FunctionDerivative(hiddenLayer[k].Output()) * outputLayer[0].Error * outputLayer[0].Weights[k];
                                hiddenLayer[k].UpdateWeights();
                            }
                            outputLayer[0].UpdateWeights();
                        }


                        TrainingMSE /= trainingDataInputs.Count;
                        double TestingMSE = 0;


                        for (int j = 0; j < testingDataInputs.Count; j++)
                        {
                            double[] hiddenLayerInputs = new double[] { testingDataInputs[j] };
                            double[] outputLayerInputs = new double[hiddenLayerCount];


                            foreach (Neuron n in hiddenLayer)
                            {
                                n.Inputs = hiddenLayerInputs;
                            }
                            for (int k = 0; k < hiddenLayer.Length; k++)
                            {
                                outputLayerInputs[k] = hiddenLayer[k].Output();
                            }
                            outputLayer[0].Inputs = outputLayerInputs;

                            TestingMSE += Pow(testingDataOutputs[j] - outputLayer[0].Output(), 2);
                            if (i == epochsCount)
                            {
                                finalOutput.Add(outputLayer[0].Output());
                            }
                        }
                        if (i == epochsCount)
                        {
                            XmlSerializer xs1 = new XmlSerializer(typeof(List <double>));
                            using (StreamWriter sw1 = new StreamWriter(variant.ToString() + "_" + bias.ToString() + "_Execution" + counter.ToString() + "FinalOuput.xml"))
                            {
                                xs1.Serialize(sw1, finalOutput);
                            }
                        }
                        TestingMSE /= testingDataInputs.Count;
                        ApproximationData approximationData;
                        approximationData.MSETrening = TrainingMSE;
                        approximationData.MSETest    = TestingMSE;
                        if (i % 20 == 1)
                        {
                            toSerialize.Add(approximationData);
                        }
                    }

                    xs.Serialize(sw, toSerialize);
                }
            }
        }