Exemplo n.º 1
0
    public static double dgeco(ref double[] a, int lda, int n, ref int[] ipvt, ref double[] z)

    //****************************************************************************80
    //
    //  Purpose:
    //
    //    DGECO factors a real matrix and estimates its condition number.
    //
    //  Discussion:
    //
    //    If RCOND is not needed, DGEFA is slightly faster.
    //
    //    To solve A * X = B, follow DGECO by DGESL.
    //
    //    To compute inverse ( A ) * C, follow DGECO by DGESL.
    //
    //    To compute determinant ( A ), follow DGECO by DGEDI.
    //
    //    To compute inverse ( A ), follow DGECO by DGEDI.
    //
    //    For the system A * X = B, relative perturbations in A and B
    //    of size EPSILON may cause relative perturbations in X of size
    //    EPSILON/RCOND.
    //
    //    If RCOND is so small that the logical expression
    //      1.0D+00 + RCOND == 1.0D+00
    //    is true, then A may be singular to working precision.  In particular,
    //    RCOND is zero if exact singularity is detected or the estimate
    //    underflows.
    //
    //  Licensing:
    //
    //    This code is distributed under the GNU LGPL license.
    //
    //  Modified:
    //
    //    25 May 2005
    //
    //  Author:
    //
    //    Original FORTRAN77 version by Jack Dongarra, Cleve Moler, Jim Bunch,
    //    Pete Stewart.
    //    C++ version by John Burkardt.
    //
    //  Reference:
    //
    //    Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart,
    //    LINPACK User's Guide,
    //    SIAM, (Society for Industrial and Applied Mathematics),
    //    3600 University City Science Center,
    //    Philadelphia, PA, 19104-2688.
    //    ISBN 0-89871-172-X
    //
    //  Parameters:
    //
    //    Input/output, double A[LDA*N].  On input, a matrix to be
    //    factored.  On output, the LU factorization of the matrix.
    //
    //    Input, int LDA, the leading dimension of the array A.
    //
    //    Input, int N, the order of the matrix A.
    //
    //    Output, int IPVT[N], the pivot indices.
    //
    //    Output, double Z[N], a work vector whose contents are usually
    //    unimportant.  If A is close to a singular matrix, then Z is an
    //    approximate null vector in the sense that
    //      norm ( A * Z ) = RCOND * norm ( A ) * norm ( Z ).
    //
    //    Output, double DGECO, the value of RCOND, an estimate
    //    of the reciprocal condition number of A.
    //
    {
        int    i;
        int    j;
        int    k;
        int    l;
        double rcond;
        double s;
        double t;
        //
        //  Compute the L1 norm of A.
        //
        double anorm = 0.0;

        for (j = 1; j <= n; j++)
        {
            anorm = Math.Max(anorm, BLAS1D.dasum(n, a, 1, index:  +0 + (j - 1) * lda));
        }

        //
        //  Compute the LU factorization.
        //
        DGEFA.dgefa(ref a, lda, n, ref ipvt);
        //
        //  RCOND = 1 / ( norm(A) * (estimate of norm(inverse(A))) )
        //
        //  estimate of norm(inverse(A)) = norm(Z) / norm(Y)
        //
        //  where
        //    A * Z = Y
        //  and
        //    A' * Y = E
        //
        //  The components of E are chosen to cause maximum local growth in the
        //  elements of W, where U'*W = E.  The vectors are frequently rescaled
        //  to avoid overflow.
        //
        //  Solve U' * W = E.
        //
        double ek = 1.0;

        for (i = 1; i <= n; i++)
        {
            z[i - 1] = 0.0;
        }

        for (k = 1; k <= n; k++)
        {
            if (z[k - 1] != 0.0)
            {
                ek *= typeMethods.r8_sign(-z[k - 1]);
            }

            if (Math.Abs(a[k - 1 + (k - 1) * lda]) < Math.Abs(ek - z[k - 1]))
            {
                s = Math.Abs(a[k - 1 + (k - 1) * lda]) / Math.Abs(ek - z[k - 1]);
                for (i = 1; i <= n; i++)
                {
                    z[i - 1] = s * z[i - 1];
                }

                ek = s * ek;
            }

            double wk  = ek - z[k - 1];
            double wkm = -ek - z[k - 1];
            s = Math.Abs(wk);
            double sm = Math.Abs(wkm);

            if (a[k - 1 + (k - 1) * lda] != 0.0)
            {
                wk  /= a[k - 1 + (k - 1) * lda];
                wkm /= a[k - 1 + (k - 1) * lda];
            }
            else
            {
                wk  = 1.0;
                wkm = 1.0;
            }

            if (k + 1 <= n)
            {
                for (j = k + 1; j <= n; j++)
                {
                    sm       += Math.Abs(z[j - 1] + wkm * a[k - 1 + (j - 1) * lda]);
                    z[j - 1] += wk * a[k - 1 + (j - 1) * lda];
                    s        += Math.Abs(z[j - 1]);
                }

                if (s < sm)
                {
                    t  = wkm - wk;
                    wk = wkm;
                    for (i = k + 1; i <= n; i++)
                    {
                        z[i - 1] += t * a[k - 1 + (i - 1) * lda];
                    }
                }
            }

            z[k - 1] = wk;
        }

        t = BLAS1D.dasum(n, z, 1);
        for (i = 1; i <= n; i++)
        {
            z[i - 1] /= t;
        }

        //
        //  Solve L' * Y = W
        //
        for (k = n; 1 <= k; k--)
        {
            z[k - 1] += BLAS1D.ddot(n - k, a, 1, z, 1, xIndex:  +k + (k - 1) * lda, yIndex: +k);

            switch (Math.Abs(z[k - 1]))
            {
            case > 1.0:
            {
                t = Math.Abs(z[k - 1]);
                for (i = 1; i <= n; i++)
                {
                    z[i - 1] /= t;
                }

                break;
            }
            }

            l = ipvt[k - 1];

            t        = z[l - 1];
            z[l - 1] = z[k - 1];
            z[k - 1] = t;
        }

        t = BLAS1D.dasum(n, z, 1);
        for (i = 1; i <= n; i++)
        {
            z[i - 1] /= t;
        }

        double ynorm = 1.0;

        //
        //  Solve L * V = Y.
        //
        for (k = 1; k <= n; k++)
        {
            l = ipvt[k - 1];

            t        = z[l - 1];
            z[l - 1] = z[k - 1];
            z[k - 1] = t;

            for (i = k + 1; i <= n; i++)
            {
                z[i - 1] += t * a[i - 1 + (k - 1) * lda];
            }

            switch (Math.Abs(z[k - 1]))
            {
            case > 1.0:
            {
                ynorm /= Math.Abs(z[k - 1]);
                t      = Math.Abs(z[k - 1]);
                for (i = 1; i <= n; i++)
                {
                    z[i - 1] /= t;
                }

                break;
            }
            }
        }

        s = BLAS1D.dasum(n, z, 1);
        for (i = 1; i <= n; i++)
        {
            z[i - 1] /= s;
        }

        ynorm /= s;
        //
        //  Solve U * Z = V.
        //
        for (k = n; 1 <= k; k--)
        {
            if (Math.Abs(a[k - 1 + (k - 1) * lda]) < Math.Abs(z[k - 1]))
            {
                s = Math.Abs(a[k - 1 + (k - 1) * lda]) / Math.Abs(z[k - 1]);
                for (i = 1; i <= n; i++)
                {
                    z[i - 1] = s * z[i - 1];
                }

                ynorm = s * ynorm;
            }

            if (a[k - 1 + (k - 1) * lda] != 0.0)
            {
                z[k - 1] /= a[k - 1 + (k - 1) * lda];
            }
            else
            {
                z[k - 1] = 1.0;
            }

            for (i = 1; i <= k - 1; i++)
            {
                z[i - 1] -= z[k - 1] * a[i - 1 + (k - 1) * lda];
            }
        }

        //
        //  Normalize Z in the L1 norm.
        //
        s = 1.0 / BLAS1D.dasum(n, z, 1);
        for (i = 1; i <= n; i++)
        {
            z[i - 1] = s * z[i - 1];
        }

        ynorm = s * ynorm;

        if (anorm != 0.0)
        {
            rcond = ynorm / anorm;
        }
        else
        {
            rcond = 0.0;
        }

        return(rcond);
    }
Exemplo n.º 2
0
    public static double dgbco(ref double[] abd, int lda, int n, int ml, int mu, ref int[] ipvt,
                               double[] z)

    //****************************************************************************80
    //
    //  Purpose:
    //
    //    DGBCO factors a real band matrix and estimates its condition.
    //
    //  Discussion:
    //
    //    If RCOND is not needed, DGBFA is slightly faster.
    //
    //    To solve A*X = B, follow DGBCO by DGBSL.
    //
    //    To compute inverse(A)*C, follow DGBCO by DGBSL.
    //
    //    To compute determinant(A), follow DGBCO by DGBDI.
    //
    //  Example:
    //
    //    If the original matrix is
    //
    //      11 12 13  0  0  0
    //      21 22 23 24  0  0
    //       0 32 33 34 35  0
    //       0  0 43 44 45 46
    //       0  0  0 54 55 56
    //       0  0  0  0 65 66
    //
    //    then for proper band storage,
    //
    //      N = 6, ML = 1, MU = 2, 5 <= LDA and ABD should contain
    //
    //       *  *  *  +  +  +      * = not used
    //       *  * 13 24 35 46      + = used for pivoting
    //       * 12 23 34 45 56
    //      11 22 33 44 55 66
    //      21 32 43 54 65  *
    //
    //  Band storage:
    //
    //    If A is a band matrix, the following program segment
    //    will set up the input.
    //
    //      ml = (band width below the diagonal)
    //      mu = (band width above the diagonal)
    //      m = ml + mu + 1
    //
    //      do j = 1, n
    //        i1 = max ( 1, j-mu )
    //        i2 = min ( n, j+ml )
    //        do i = i1, i2
    //          k = i - j + m
    //          abd(k,j) = a(i,j)
    //        }
    //      }
    //
    //    This uses rows ML+1 through 2*ML+MU+1 of ABD.  In addition, the first
    //    ML rows in ABD are used for elements generated during the
    //    triangularization.  The total number of rows needed in ABD is
    //    2*ML+MU+1.  The ML+MU by ML+MU upper left triangle and the ML by ML
    //    lower right triangle are not referenced.
    //
    //  Licensing:
    //
    //    This code is distributed under the GNU LGPL license.
    //
    //  Modified:
    //
    //    07 June 2005
    //
    //  Author:
    //
    //    Original FORTRAN77 version by Jack Dongarra, Cleve Moler, Jim Bunch,
    //    Pete Stewart.
    //    C++ version by John Burkardt.
    //
    //  Reference:
    //
    //    Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart,
    //    LINPACK User's Guide,
    //    SIAM, (Society for Industrial and Applied Mathematics),
    //    3600 University City Science Center,
    //    Philadelphia, PA, 19104-2688.
    //    ISBN 0-89871-172-X
    //
    //  Parameters:
    //
    //    Input/output, double ABD[LDA*N].  On input, the matrix in band
    //    storage.  The columns of the matrix are stored in the columns of ABD and
    //    the diagonals of the matrix are stored in rows ML+1 through 2*ML+MU+1
    //    of ABD.  On output, an upper triangular matrix in band storage and
    //    the multipliers which were used to obtain it.  The factorization can
    //    be written A = L*U where L is a product of permutation and unit lower
    //    triangular matrices and U is upper triangular.
    //
    //    Input, int LDA, the leading dimension of the array ABD.
    //    2*ML + MU + 1 <= LDA is required.
    //
    //    Input, int N, the order of the matrix.
    //
    //    Input, int ML, MU, the number of diagonals below and above the
    //    main diagonal.  0 <= ML < N, 0 <= MU < N.
    //
    //    Output, int IPVT[N], the pivot indices.
    //
    //    Workspace, double Z[N], a work vector whose contents are
    //    usually unimportant.  If A is close to a singular matrix, then Z is an
    //    approximate null vector in the sense that
    //      norm(A*Z) = RCOND * norm(A) * norm(Z).
    //
    //    Output, double DGBCO, an estimate of the reciprocal condition number RCOND
    //    of A.  For the system A*X = B, relative perturbations in A and B of size
    //    EPSILON may cause relative perturbations in X of size EPSILON/RCOND.
    //    If RCOND is so small that the logical expression
    //      1.0 + RCOND == 1.0D+00
    //    is true, then A may be singular to working precision.  In particular,
    //    RCOND is zero if exact singularity is detected or the estimate underflows.
    //
    {
        int    i;
        int    j;
        int    k;
        int    lm;
        double rcond;
        double s;
        double t;
        //
        //  Compute the 1-norm of A.
        //
        double anorm = 0.0;
        int    l     = ml + 1;
        int    is_   = l + mu;

        for (j = 1; j <= n; j++)
        {
            anorm = Math.Max(anorm, BLAS1D.dasum(l, abd, 1, index: +is_ - 1 + (j - 1) * lda));
            if (ml + 1 < is_)
            {
                is_ -= 1;
            }

            if (j <= mu)
            {
                l += 1;
            }

            if (n - ml <= j)
            {
                l -= 1;
            }
        }

        //
        //  Factor.
        //
        DGBFA.dgbfa(ref abd, lda, n, ml, mu, ref ipvt);
        //
        //  RCOND = 1/(norm(A)*(estimate of norm(inverse(A)))).
        //
        //  Estimate = norm(Z)/norm(Y) where  a*z = y  and A'*Y = E.
        //
        //  A' is the transpose of A.  The components of E are
        //  chosen to cause maximum local growth in the elements of W where
        //  U'*W = E.  The vectors are frequently rescaled to avoid
        //  overflow.
        //
        //  Solve U' * W = E.
        //
        double ek = 1.0;

        for (i = 1; i <= n; i++)
        {
            z[i - 1] = 0.0;
        }

        int m  = ml + mu + 1;
        int ju = 0;

        for (k = 1; k <= n; k++)
        {
            if (z[k - 1] != 0.0)
            {
                ek *= typeMethods.r8_sign(-z[k - 1]);
            }

            if (Math.Abs(abd[m - 1 + (k - 1) * lda]) < Math.Abs(ek - z[k - 1]))
            {
                s = Math.Abs(abd[m - 1 + (k - 1) * lda]) / Math.Abs(ek - z[k - 1]);
                for (i = 1; i <= n; i++)
                {
                    z[i - 1] = s * z[i - 1];
                }

                ek = s * ek;
            }

            double wk  = ek - z[k - 1];
            double wkm = -ek - z[k - 1];
            s = Math.Abs(wk);
            double sm = Math.Abs(wkm);

            if (abd[m - 1 + (k - 1) * lda] != 0.0)
            {
                wk  /= abd[m - 1 + (k - 1) * lda];
                wkm /= abd[m - 1 + (k - 1) * lda];
            }
            else
            {
                wk  = 1.0;
                wkm = 1.0;
            }

            ju = Math.Min(Math.Max(ju, mu + ipvt[k - 1]), n);
            int mm = m;

            if (k + 1 <= ju)
            {
                for (j = k + 1; j <= ju; j++)
                {
                    mm       -= 1;
                    sm       += Math.Abs(z[j - 1] + wkm * abd[mm - 1 + (j - 1) * lda]);
                    z[j - 1] += wk * abd[mm - 1 + (j - 1) * lda];
                    s        += Math.Abs(z[j - 1]);
                }

                if (s < sm)
                {
                    t  = wkm - wk;
                    wk = wkm;
                    mm = m;
                    for (j = k + 1; j <= ju; ju++)
                    {
                        mm       -= 1;
                        z[j - 1] += t * abd[mm - 1 + (j - 1) * lda];
                    }
                }
            }

            z[k - 1] = wk;
        }

        s = BLAS1D.dasum(n, z, 1);

        for (i = 1; i <= n; i++)
        {
            z[i - 1] /= s;
        }

        //
        //  Solve L' * Y = W.
        //
        for (k = n; 1 <= k; k--)
        {
            lm = Math.Min(ml, n - k);

            if (k < m)
            {
                z[k - 1] += BLAS1D.ddot(lm, abd, 1, z, 1, xIndex: +m + (k - 1) * lda, yIndex: +k);
            }

            switch (Math.Abs(z[k - 1]))
            {
            case > 1.0:
            {
                s = 1.0 / Math.Abs(z[k - 1]);
                for (i = 1; i <= n; i++)
                {
                    z[i - 1] = s * z[i - 1];
                }

                break;
            }
            }

            l        = ipvt[k - 1];
            t        = z[l - 1];
            z[l - 1] = z[k - 1];
            z[k - 1] = t;
        }

        s = BLAS1D.dasum(n, z, 1);
        for (i = 1; i <= n; i++)
        {
            z[i - 1] /= s;
        }

        double ynorm = 1.0;

        //
        //  Solve L * V = Y.
        //
        for (k = 1; k <= n; k++)
        {
            l        = ipvt[k - 1];
            t        = z[l - 1];
            z[l - 1] = z[k - 1];
            z[k - 1] = t;
            lm       = Math.Min(ml, n - k);

            if (k < n)
            {
                BLAS1D.daxpy(lm, t, abd, 1, ref z, 1, xIndex: +m + (k - 1) * lda, yIndex: +k);
            }

            switch (Math.Abs(z[k - 1]))
            {
            case > 1.0:
            {
                s = 1.0 / Math.Abs(z[k - 1]);
                for (i = 1; i <= n; i++)
                {
                    z[i - 1] = s * z[i - 1];
                }

                ynorm = s * ynorm;
                break;
            }
            }
        }

        s = 1.0 / BLAS1D.dasum(n, z, 1);
        for (i = 1; i <= n; i++)
        {
            z[i - 1] = s * z[i - 1];
        }

        ynorm = s * ynorm;
        //
        //  Solve U * Z = W.
        //
        for (k = n; 1 <= k; k--)
        {
            if (Math.Abs(abd[m - 1 + (k - 1) * lda]) < Math.Abs(z[k - 1]))
            {
                s = Math.Abs(abd[m - 1 + (k - 1) * lda]) / Math.Abs(z[k - 1]);
                for (i = 1; i <= n; i++)
                {
                    z[i - 1] = s * z[i - 1];
                }

                ynorm = s * ynorm;
            }

            if (abd[m - 1 + (k - 1) * lda] != 0.0)
            {
                z[k - 1] /= abd[m - 1 + (k - 1) * lda];
            }
            else
            {
                z[k - 1] = 1.0;
            }

            lm = Math.Min(k, m) - 1;
            int la = m - lm;
            int lz = k - lm;
            t = -z[k - 1];
            BLAS1D.daxpy(lm, t, abd, 1, ref z, 1, xIndex:  +la - 1 + (k - 1) * lda, yIndex:  +lz - 1);
        }

        //
        //  Make ZNORM = 1.0.
        //
        s = 1.0 / BLAS1D.dasum(n, z, 1);
        for (i = 1; i <= n; i++)
        {
            z[i - 1] = s * z[i - 1];
        }

        ynorm = s * ynorm;

        if (anorm != 0.0)
        {
            rcond = ynorm / anorm;
        }
        else
        {
            rcond = 0.0;
        }

        return(rcond);
    }
Exemplo n.º 3
0
    private static void dasum_test()

    //****************************************************************************80
    //
    //  Purpose:
    //
    //    DASUM_TEST tests DASUM.
    //
    //  Licensing:
    //
    //    This code is distributed under the GNU LGPL license.
    //
    //  Modified:
    //
    //    15 May 2006
    //
    //  Author:
    //
    //    John Burkardt
    //
    {
        int LDA = 6;
        int MA  = 5;
        int NA  = 4;
        int NX  = 10;

        double[] a = new double[LDA * NA];
        double[] x = new double[NX];

        for (int i = 0; i < NX; i++)
        {
            x[i] = Math.Pow(-1.0, i + 1) * (2 * (i + 1));
        }

        Console.WriteLine("");
        Console.WriteLine("DASUM_TEST");
        Console.WriteLine("  DASUM adds the absolute values of elements of a vector.");
        Console.WriteLine("");
        Console.WriteLine("  X = ");
        Console.WriteLine("");
        for (int i = 0; i < NX; i++)
        {
            Console.WriteLine("  "
                              + (i + 1).ToString(CultureInfo.InvariantCulture).PadLeft(6) + "  "
                              + x[i].ToString(CultureInfo.InvariantCulture).PadLeft(14) + "");
        }

        Console.WriteLine("");
        Console.WriteLine("  DASUM ( NX,   X, 1 ) =    " + BLAS1D.dasum(NX, x, 1) + "");
        Console.WriteLine("  DASUM ( NX/2, X, 2 ) =    " + BLAS1D.dasum(NX / 2, x, 2) + "");
        Console.WriteLine("  DASUM ( 2,    X, NX/2 ) = " + BLAS1D.dasum(2, x, NX / 2) + "");

        for (int i = 0; i < MA; i++)
        {
            for (int j = 0; j < NA; j++)
            {
                a[i + j * LDA] = Math.Pow(-1.0, i + 1 + j + 1)
                                 * (10 * (i + 1) + j + 1);
            }
        }

        Console.WriteLine("");
        Console.WriteLine("  Demonstrate with a matrix A:");
        Console.WriteLine("");
        for (int i = 0; i < MA; i++)
        {
            string cout = "";
            for (int j = 0; j < NA; j++)
            {
                cout += "  " + a[i + j * LDA].ToString(CultureInfo.InvariantCulture).PadLeft(14);
            }

            Console.WriteLine(cout);
        }

        Console.WriteLine("");
        Console.WriteLine("  DASUM(MA,A(1,2),1) =   " + BLAS1D.dasum(MA, a, 1, 0 + 1 * LDA) + "");
        Console.WriteLine("  DASUM(NA,A(2,1),LDA) = " + BLAS1D.dasum(NA, a, LDA, 1) + "");
    }
Exemplo n.º 4
0
    public static double dpoco(ref double[] a, int lda, int n, ref double[] z)

    //****************************************************************************80
    //
    //  Purpose:
    //
    //    DPOCO factors a real symmetric positive definite matrix and estimates its condition.
    //
    //  Discussion:
    //
    //    If RCOND is not needed, DPOFA is slightly faster.
    //
    //    To solve A*X = B, follow DPOCO by DPOSL.
    //
    //    To compute inverse(A)*C, follow DPOCO by DPOSL.
    //
    //    To compute determinant(A), follow DPOCO by DPODI.
    //
    //    To compute inverse(A), follow DPOCO by DPODI.
    //
    //  Licensing:
    //
    //    This code is distributed under the GNU LGPL license.
    //
    //  Modified:
    //
    //    06 June 2005
    //
    //  Author:
    //
    //    Original FORTRAN77 version by Jack Dongarra, Cleve Moler, Jim Bunch,
    //    Pete Stewart.
    //    C++ version by John Burkardt.
    //
    //  Reference:
    //
    //    Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart,
    //    LINPACK User's Guide,
    //    SIAM, (Society for Industrial and Applied Mathematics),
    //    3600 University City Science Center,
    //    Philadelphia, PA, 19104-2688.
    //    ISBN 0-89871-172-X
    //
    //  Parameters:
    //
    //    Input/output, double A[LDA*N].  On input, the symmetric
    //    matrix to be factored.  Only the diagonal and upper triangle are used.
    //    On output, an upper triangular matrix R so that A = R'*R where R'
    //    is the transpose.  The strict lower triangle is unaltered.
    //    If INFO /= 0, the factorization is not complete.
    //
    //    Input, int LDA, the leading dimension of the array A.
    //
    //    Input, int N, the order of the matrix.
    //
    //    Output, double Z[N], a work vector whose contents are usually
    //    unimportant.  If A is close to a singular matrix, then Z is an
    //    approximate null vector in the sense that
    //      norm(A*Z) = RCOND * norm(A) * norm(Z).
    //    If INFO /= 0, Z is unchanged.
    //
    //    Output, double DPOCO, an estimate of the reciprocal
    //    condition of A.  For the system A*X = B, relative perturbations in
    //    A and B of size EPSILON may cause relative perturbations in X of
    //    size EPSILON/RCOND.  If RCOND is so small that the logical expression
    //      1.0D+00 + RCOND == 1.0D+00
    //    is true, then A may be singular to working precision.  In particular,
    //    RCOND is zero if exact singularity is detected or the estimate underflows.
    //
    {
        int    i;
        int    j;
        int    k;
        double rcond;
        double s;
        double t;

        //
        //  Find norm of A using only upper half.
        //
        for (j = 1; j <= n; j++)
        {
            z[j - 1] = BLAS1D.dasum(j, a, 1, index: +0 + (j - 1) * lda);
            for (i = 1; i <= j - 1; i++)
            {
                z[i - 1] += Math.Abs(a[i - 1 + (j - 1) * lda]);
            }
        }

        double anorm = 0.0;

        for (i = 1; i <= n; i++)
        {
            anorm = Math.Max(anorm, z[i - 1]);
        }

        //
        //  Factor.
        //
        int info = DPOFA.dpofa(ref a, lda, n);

        if (info != 0)
        {
            rcond = 0.0;
            return(rcond);
        }

        //
        //  RCOND = 1/(norm(A)*(estimate of norm(inverse(A)))).
        //
        //  Estimate = norm(Z)/norm(Y) where A*Z = Y and A*Y = E.
        //
        //  The components of E are chosen to cause maximum local
        //  growth in the elements of W where R'*W = E.
        //
        //  The vectors are frequently rescaled to avoid overflow.
        //
        //  Solve R' * W = E.
        //
        double ek = 1.0;

        for (i = 1; i <= n; i++)
        {
            z[i - 1] = 0.0;
        }

        for (k = 1; k <= n; k++)
        {
            if (z[k - 1] != 0.0)
            {
                ek *= typeMethods.r8_sign(-z[k - 1]);
            }

            if (a[k - 1 + (k - 1) * lda] < Math.Abs(ek - z[k - 1]))
            {
                s = a[k - 1 + (k - 1) * lda] / Math.Abs(ek - z[k - 1]);
                for (i = 1; i <= n; i++)
                {
                    z[i - 1] = s * z[i - 1];
                }

                ek = s * ek;
            }

            double wk  = ek - z[k - 1];
            double wkm = -ek - z[k - 1];
            s = Math.Abs(wk);
            double sm = Math.Abs(wkm);
            wk  /= a[k - 1 + (k - 1) * lda];
            wkm /= a[k - 1 + (k - 1) * lda];

            if (k + 1 <= n)
            {
                for (j = k + 1; j <= n; j++)
                {
                    sm       += Math.Abs(z[j - 1] + wkm * a[k - 1 + (j - 1) * lda]);
                    z[j - 1] += wk * a[k - 1 + (j - 1) * lda];
                    s        += Math.Abs(z[j - 1]);
                }

                if (s < sm)
                {
                    t  = wkm - wk;
                    wk = wkm;
                    for (j = k + 1; j <= n; j++)
                    {
                        z[j - 1] += t * a[k - 1 + (j - 1) * lda];
                    }
                }
            }

            z[k - 1] = wk;
        }

        s = BLAS1D.dasum(n, z, 1);
        for (i = 1; i <= n; i++)
        {
            z[i - 1] /= s;
        }

        //
        //  Solve R * Y = W.
        //
        for (k = n; 1 <= k; k--)
        {
            if (a[k - 1 + (k - 1) * lda] < Math.Abs(z[k - 1]))
            {
                s = a[k - 1 + (k - 1) * lda] / Math.Abs(z[k - 1]);
                for (i = 1; i <= n; i++)
                {
                    z[i - 1] = s * z[i - 1];
                }
            }

            z[k - 1] /= a[k - 1 + (k - 1) * lda];
            t         = -z[k - 1];
            BLAS1D.daxpy(k - 1, t, a, 1, ref z, 1, xIndex: +0 + (k - 1) * lda);
        }

        s = BLAS1D.dasum(n, z, 1);
        for (i = 1; i <= n; i++)
        {
            z[i - 1] /= s;
        }

        double ynorm = 1.0;

        //
        //  Solve R' * V = Y.
        //
        for (k = 1; k <= n; k++)
        {
            z[k - 1] -= BLAS1D.ddot(k - 1, a, 1, z, 1, xIndex: +0 + (k - 1) * lda);

            if (a[k - 1 + (k - 1) * lda] < Math.Abs(z[k - 1]))
            {
                s = a[k - 1 + (k - 1) * lda] / Math.Abs(z[k - 1]);
                for (i = 1; i <= n; i++)
                {
                    z[i - 1] = s * z[i - 1];
                }

                ynorm = s * ynorm;
            }

            z[k - 1] /= a[k - 1 + (k - 1) * lda];
        }

        s = 1.0 / BLAS1D.dasum(n, z, 1);
        for (i = 1; i <= n; i++)
        {
            z[i - 1] = s * z[i - 1];
        }

        ynorm = s * ynorm;
        //
        //  Solve R * Z = V.
        //
        for (k = n; 1 <= k; k--)
        {
            if (a[k - 1 + (k - 1) * lda] < Math.Abs(z[k - 1]))
            {
                s = a[k - 1 + (k - 1) * lda] / Math.Abs(z[k - 1]);
                for (i = 1; i <= n; i++)
                {
                    z[i - 1] = s * z[i - 1];
                }

                ynorm = s * ynorm;
            }

            z[k - 1] /= a[k - 1 + (k - 1) * lda];
            t         = -z[k - 1];
            BLAS1D.daxpy(k - 1, t, a, 1, ref z, 1, xIndex: +0 + (k - 1) * lda);
        }

        //
        //  Make ZNORM = 1.0.
        //
        s = 1.0 / BLAS1D.dasum(n, z, 1);
        for (i = 1; i <= n; i++)
        {
            z[i - 1] = s * z[i - 1];
        }

        ynorm = s * ynorm;

        if (anorm != 0.0)
        {
            rcond = ynorm / anorm;
        }
        else
        {
            rcond = 0.0;
        }

        return(rcond);
    }
Exemplo n.º 5
0
    public static double dppco(ref double[] ap, int n, ref double[] z)

    //****************************************************************************80
    //
    //  Purpose:
    //
    //    DPPCO factors a real symmetric positive definite matrix in packed form.
    //
    //  Discussion:
    //
    //    DPPCO also estimates the condition of the matrix.
    //
    //    If RCOND is not needed, DPPFA is slightly faster.
    //
    //    To solve A*X = B, follow DPPCO by DPPSL.
    //
    //    To compute inverse(A)*C, follow DPPCO by DPPSL.
    //
    //    To compute determinant(A), follow DPPCO by DPPDI.
    //
    //    To compute inverse(A), follow DPPCO by DPPDI.
    //
    //  Packed storage:
    //
    //    The following program segment will pack the upper triangle of
    //    a symmetric matrix.
    //
    //      k = 0
    //      do j = 1, n
    //        do i = 1, j
    //          k = k + 1
    //          ap[k-1] = a(i,j)
    //        }
    //      }
    //
    //  Licensing:
    //
    //    This code is distributed under the GNU LGPL license.
    //
    //  Modified:
    //
    //    07 June 2005
    //
    //  Author:
    //
    //    Original FORTRAN77 version by Jack Dongarra, Cleve Moler, Jim Bunch,
    //    Pete Stewart.
    //    C++ version by John Burkardt.
    //
    //  Reference:
    //
    //    Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart,
    //    LINPACK User's Guide,
    //    SIAM, (Society for Industrial and Applied Mathematics),
    //    3600 University City Science Center,
    //    Philadelphia, PA, 19104-2688.
    //    ISBN 0-89871-172-X
    //
    //  Parameters:
    //
    //    Input/output, double AP[N*(N+1)/2].  On input, the packed
    //    form of a symmetric matrix A.  The columns of the upper triangle are
    //    stored sequentially in a one-dimensional array.  On output, an upper
    //    triangular matrix R, stored in packed form, so that A = R'*R.
    //    If INFO /= 0, the factorization is not complete.
    //
    //    Input, int N, the order of the matrix.
    //
    //    Output, double Z[N], a work vector whose contents are usually
    //    unimportant.  If A is singular to working precision, then Z is an
    //    approximate null vector in the sense that
    //      norm(A*Z) = RCOND * norm(A) * norm(Z).
    //    If INFO /= 0, Z is unchanged.
    //
    //    Output, double DPPCO, an estimate of the reciprocal condition number RCOND
    //    of A.  For the system A*X = B, relative perturbations in A and B of size
    //    EPSILON may cause relative perturbations in X of size EPSILON/RCOND.
    //    If RCOND is so small that the logical expression
    //      1.0 + RCOND == 1.0D+00
    //    is true, then A may be singular to working precision.  In particular,
    //    RCOND is zero if exact singularity is detected or the estimate underflows.
    //
    {
        int    i;
        int    j;
        int    k;
        double rcond;
        double s;
        double t;
        //
        //  Find the norm of A.
        //
        int j1 = 1;

        for (j = 1; j <= n; j++)
        {
            z[j - 1] = BLAS1D.dasum(j, ap, 1, index: +j1 - 1);
            int ij = j1;
            j1 += j;
            for (i = 1; i <= j - 1; i++)
            {
                z[i - 1] += Math.Abs(ap[ij - 1]);
                ij       += 1;
            }
        }

        double anorm = 0.0;

        for (i = 1; i <= n; i++)
        {
            anorm = Math.Max(anorm, z[i - 1]);
        }

        //
        //  Factor.
        //
        int info = DPPFA.dppfa(ref ap, n);

        if (info != 0)
        {
            rcond = 0.0;
            return(rcond);
        }

        //
        //  RCOND = 1/(norm(A)*(estimate of norm(inverse(A)))).
        //
        //  Estimate = norm(Z)/norm(Y) where A * Z = Y and A * Y = E.
        //
        //  The components of E are chosen to cause maximum local
        //  growth in the elements of W where R'*W = E.
        //
        //  The vectors are frequently rescaled to avoid overflow.
        //
        //  Solve R' * W = E.
        //
        double ek = 1.0;

        for (i = 1; i <= n; i++)
        {
            z[i - 1] = 0.0;
        }

        int kk = 0;

        for (k = 1; k <= n; k++)
        {
            kk += k;

            if (z[k - 1] != 0.0)
            {
                ek *= typeMethods.r8_sign(-z[k - 1]);
            }

            if (ap[kk - 1] < Math.Abs(ek - z[k - 1]))
            {
                s = ap[kk - 1] / Math.Abs(ek - z[k - 1]);
                for (i = 1; i <= n; i++)
                {
                    z[i - 1] = s * z[i - 1];
                }

                ek = s * ek;
            }

            double wk  = ek - z[k - 1];
            double wkm = -ek - z[k - 1];
            s = Math.Abs(wk);
            double sm = Math.Abs(wkm);
            wk  /= ap[kk - 1];
            wkm /= ap[kk - 1];
            int kj = kk + k;

            if (k + 1 <= n)
            {
                for (j = k + 1; j <= n; j++)
                {
                    sm       += Math.Abs(z[j - 1] + wkm * ap[kj - 1]);
                    z[j - 1] += wk * ap[kj - 1];
                    s        += Math.Abs(z[j - 1]);
                    kj       += j;
                }

                if (s < sm)
                {
                    t  = wkm - wk;
                    wk = wkm;
                    kj = kk + k;

                    for (j = k + 1; j <= n; j++)
                    {
                        z[j - 1] += t * ap[kj - 1];
                        kj       += j;
                    }
                }
            }

            z[k - 1] = wk;
        }

        s = BLAS1D.dasum(n, z, 1);
        for (i = 1; i <= n; i++)
        {
            z[i - 1] /= s;
        }

        //
        //  Solve R * Y = W.
        //
        for (k = n; 1 <= k; k--)
        {
            if (ap[kk - 1] < Math.Abs(z[k - 1]))
            {
                s = ap[kk - 1] / Math.Abs(z[k - 1]);
                for (i = 1; i <= n; i++)
                {
                    z[i - 1] = s * z[i - 1];
                }
            }

            z[k - 1] /= ap[kk - 1];
            kk       -= k;
            t         = -z[k - 1];
            BLAS1D.daxpy(k - 1, t, ap, 1, ref z, 1, xIndex: +kk);
        }

        s = BLAS1D.dasum(n, z, 1);
        for (i = 1; i <= n; i++)
        {
            z[i - 1] /= s;
        }

        double ynorm = 1.0;

        //
        //  Solve R' * V = Y.
        //
        for (k = 1; k <= n; k++)
        {
            z[k - 1] -= BLAS1D.ddot(k - 1, ap, 1, z, 1, xIndex: +kk);
            kk       += k;

            if (ap[kk - 1] < Math.Abs(z[k - 1]))
            {
                s = ap[kk - 1] / Math.Abs(z[k - 1]);
                for (i = 1; i <= n; i++)
                {
                    z[i - 1] = s * z[i - 1];
                }

                ynorm = s * ynorm;
            }

            z[k - 1] /= ap[kk - 1];
        }

        s = 1.0 / BLAS1D.dasum(n, z, 1);
        for (i = 1; i <= n; i++)
        {
            z[i - 1] = s * z[i - 1];
        }

        ynorm = s * ynorm;
        //
        //  Solve R * Z = V.
        //
        for (k = n; 1 <= k; k--)
        {
            if (ap[kk - 1] < Math.Abs(z[k - 1]))
            {
                s = ap[kk - 1] / Math.Abs(z[k - 1]);
                for (i = 1; i <= n; i++)
                {
                    z[i - 1] = s * z[i - 1];
                }

                ynorm = s * ynorm;
            }

            z[k - 1] /= ap[kk - 1];
            kk       -= k;
            t         = -z[k - 1];
            BLAS1D.daxpy(k - 1, t, ap, 1, ref z, 1, xIndex: +kk);
        }

        //
        //  Make ZNORM = 1.0.
        //
        s = 1.0 / BLAS1D.dasum(n, z, 1);
        for (i = 1; i <= n; i++)
        {
            z[i - 1] = s * z[i - 1];
        }

        ynorm = s * ynorm;

        if (anorm != 0.0)
        {
            rcond = ynorm / anorm;
        }
        else
        {
            rcond = 0.0;
        }

        return(rcond);
    }
Exemplo n.º 6
0
    public static double dspco(ref double[] ap, int n, ref int[] kpvt, ref double[] z)

    //****************************************************************************80
    //
    //  Purpose:
    //
    //    DSPCO factors a real symmetric matrix stored in packed form.
    //
    //  Discussion:
    //
    //    DSPCO uses elimination with symmetric pivoting and estimates
    //    the condition of the matrix.
    //
    //    If RCOND is not needed, DSPFA is slightly faster.
    //
    //    To solve A*X = B, follow DSPCO by DSPSL.
    //
    //    To compute inverse(A)*C, follow DSPCO by DSPSL.
    //
    //    To compute inverse(A), follow DSPCO by DSPDI.
    //
    //    To compute determinant(A), follow DSPCO by DSPDI.
    //
    //    To compute inertia(A), follow DSPCO by DSPDI.
    //
    //  Packed storage:
    //
    //    The following program segment will pack the upper triangle of a
    //    symmetric matrix.
    //
    //      k = 0
    //      do j = 1, n
    //        do i = 1, j
    //          k = k + 1
    //          ap[k-1] = a(i,j)
    //        }
    //      }
    //
    //  Licensing:
    //
    //    This code is distributed under the GNU LGPL license.
    //
    //  Modified:
    //
    //    07 June 2005
    //
    //  Author:
    //
    //    Original FORTRAN77 version by Jack Dongarra, Cleve Moler, Jim Bunch,
    //    Pete Stewart.
    //    C++ version by John Burkardt.
    //
    //  Reference:
    //
    //    Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart,
    //    LINPACK User's Guide,
    //    SIAM, (Society for Industrial and Applied Mathematics),
    //    3600 University City Science Center,
    //    Philadelphia, PA, 19104-2688.
    //    ISBN 0-89871-172-X
    //
    //  Parameters:
    //
    //    Input/output, double AP[N*(N+1)/2].  On input, the packed form
    //    of a symmetric matrix A.  The columns of the upper triangle are stored
    //    sequentially in a one-dimensional array.  On output, a block diagonal
    //    matrix and the multipliers which were used to obtain it, stored in
    //    packed form.  The factorization can be written A = U*D*U'
    //    where U is a product of permutation and unit upper triangular
    //    matrices, U' is the transpose of U, and D is block diagonal
    //    with 1 by 1 and 2 by 2 blocks.
    //
    //    Input, int N, the order of the matrix.
    //
    //    Output, int KPVT[N], the pivot indices.
    //
    //    Output, double Z[N] a work vector whose contents are usually
    //    unimportant.  If A is close to a singular matrix, then Z is an
    //    approximate null vector in the sense that
    //      norm(A*Z) = RCOND * norm(A) * norm(Z).
    //
    //    Output, double DSPCO, an estimate of the reciprocal condition number RCOND
    //    of A.  For the system A*X = B, relative perturbations in A and B of size
    //    EPSILON may cause relative perturbations in X of size EPSILON/RCOND.
    //    If RCOND is so small that the logical expression
    //      1.0 + RCOND == 1.0D+00
    //    is true, then A may be singular to working precision.  In particular,
    //    RCOND is zero if exact singularity is detected or the estimate underflows.
    //
    {
        double ak;
        double akm1;
        double bk;
        double bkm1;
        double denom;
        int    i;
        int    ikm1;
        int    ikp1;
        int    j;
        int    kk;
        int    km1k;
        int    km1km1;
        int    kp;
        int    kps;
        int    ks;
        double rcond;
        double s;
        double t;
        //
        //  Find norm of A using only upper half.
        //
        int j1 = 1;

        for (j = 1; j <= n; j++)
        {
            z[j - 1] = BLAS1D.dasum(j, ap, 1, index: +j1 - 1);
            int ij = j1;
            j1 += j;
            for (i = 1; i <= j - 1; i++)
            {
                z[i - 1] += Math.Abs(ap[ij - 1]);
                ij       += 1;
            }
        }

        double anorm = 0.0;

        for (i = 1; i <= n; i++)
        {
            anorm = Math.Max(anorm, z[i - 1]);
        }

        //
        //  Factor.
        //
        DSPFA.dspfa(ref ap, n, ref kpvt);
        //
        //  RCOND = 1/(norm(A)*(estimate of norm(inverse(A)))).
        //
        //  Estimate = norm(Z)/norm(Y) where A*Z = Y and A*Y = E.
        //
        //  The components of E are chosen to cause maximum local
        //  growth in the elements of W where U*D*W = E.
        //
        //  The vectors are frequently rescaled to avoid overflow.
        //
        //  Solve U * D * W = E.
        //
        double ek = 1.0;

        for (i = 1; i <= n; i++)
        {
            z[i - 1] = 0.0;
        }

        int k  = n;
        int ik = n * (n - 1) / 2;

        while (k != 0)
        {
            kk   = ik + k;
            ikm1 = ik - (k - 1);

            ks = kpvt[k - 1] switch
            {
Exemplo n.º 7
0
    public static double dsico(ref double[] a, int lda, int n, ref int[] kpvt, ref double[] z)

    //****************************************************************************80
    //
    //  Purpose:
    //
    //    DSICO factors a real symmetric matrix and estimates its condition.
    //
    //  Discussion:
    //
    //    If RCOND is not needed, DSIFA is slightly faster.
    //
    //    To solve A * X = B, follow DSICO by DSISL.
    //
    //    To compute inverse(A)*C, follow DSICO by DSISL.
    //
    //    To compute inverse(A), follow DSICO by DSIDI.
    //
    //    To compute determinant(A), follow DSICO by DSIDI.
    //
    //    To compute inertia(A), follow DSICO by DSIDI.
    //
    //  Licensing:
    //
    //    This code is distributed under the GNU LGPL license.
    //
    //  Modified:
    //
    //    07 June 2005
    //
    //  Author:
    //
    //    Original FORTRAN77 version by Jack Dongarra, Cleve Moler, Jim Bunch,
    //    Pete Stewart.
    //    C++ version by John Burkardt.
    //
    //  Reference:
    //
    //    Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart,
    //    LINPACK User's Guide,
    //    SIAM, (Society for Industrial and Applied Mathematics),
    //    3600 University City Science Center,
    //    Philadelphia, PA, 19104-2688.
    //    ISBN 0-89871-172-X
    //
    //  Parameters:
    //
    //    Input/output, double A[LDA*N].  On input, the symmetric
    //    matrix to be factored.  Only the diagonal and upper triangle are used.
    //    On output, a block diagonal matrix and the multipliers which
    //    were used to obtain it.  The factorization can be written A = U*D*U'
    //    where U is a product of permutation and unit upper triangular
    //    matrices, U' is the transpose of U, and D is block diagonal
    //    with 1 by 1 and 2 by 2 blocks.
    //
    //    Input, int LDA, the leading dimension of the array A.
    //
    //    Input, int N, the order of the matrix.
    //
    //    Output, int KPVT[N], pivot indices.
    //
    //    Output, double Z[N], a work vector whose contents are usually
    //    unimportant.  If A is close to a singular matrix, then Z is an
    //    approximate null vector in the sense that
    //      norm(A*Z) = RCOND * norm(A) * norm(Z).
    //
    //    Output, double DSICO, an estimate of the reciprocal condition number RCOND
    //    of A.  For the system A*X = B, relative perturbations in A and B of size
    //    EPSILON may cause relative perturbations in X of size EPSILON/RCOND.
    //    If RCOND is so small that the logical expression
    //      1.0 + RCOND == 1.0D+00
    //    is true, then A may be singular to working precision.  In particular,
    //    RCOND is zero if exact singularity is detected or the estimate underflows.
    //
    {
        double ak;
        double akm1;
        double bk;
        double bkm1;
        double denom;
        int    i;
        int    j;
        int    kp;
        int    kps;
        int    ks;
        double rcond;
        double s;
        double t;

        //
        //  Find the norm of A, using only entries in the upper half of the matrix.
        //
        for (j = 1; j <= n; j++)
        {
            z[j - 1] = BLAS1D.dasum(j, a, 1, index: +0 + (j - 1) * lda);
            for (i = 1; i <= j - 1; i++)
            {
                z[i - 1] += Math.Abs(a[i - 1 + (j - 1) * lda]);
            }
        }

        double anorm = 0.0;

        for (i = 1; i <= n; i++)
        {
            anorm = Math.Max(anorm, z[i - 1]);
        }

        //
        //  Factor.
        //
        DSIFA.dsifa(ref a, lda, n, ref kpvt);
        //
        //  RCOND = 1/(norm(A)*(estimate of norm(inverse(A)))).
        //
        //  Estimate = norm(Z)/norm(Y) where A*Z = Y and A*Y = E.
        //
        //  The components of E are chosen to cause maximum local
        //  growth in the elements of W where U*D*W = E.
        //
        //  The vectors are frequently rescaled to avoid overflow.
        //
        //  Solve U * D * W = E.
        //
        double ek = 1.0;

        for (i = 1; i <= n; i++)
        {
            z[i - 1] = 0.0;
        }

        int k = n;

        while (k != 2)
        {
            ks = kpvt[k - 1] switch
            {
Exemplo n.º 8
0
    public static double dtrco(double[] t, int ldt, int n, ref double[] z, int job)

    //****************************************************************************80
    //
    //  Purpose:
    //
    //    DTRCO estimates the condition of a real triangular matrix.
    //
    //  Licensing:
    //
    //    This code is distributed under the GNU LGPL license.
    //
    //  Modified:
    //
    //    25 May 2005
    //
    //  Author:
    //
    //    Original FORTRAN77 version by Jack Dongarra, Cleve Moler, Jim Bunch,
    //    Pete Stewart.
    //    C++ version by John Burkardt.
    //
    //  Reference:
    //
    //    Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart,
    //    LINPACK User's Guide,
    //    SIAM, (Society for Industrial and Applied Mathematics),
    //    3600 University City Science Center,
    //    Philadelphia, PA, 19104-2688.
    //    ISBN 0-89871-172-X
    //
    //  Parameters:
    //
    //    Input, double T[LDT*N], the triangular matrix.  The zero
    //    elements of the matrix are not referenced, and the corresponding
    //    elements of the array can be used to store other information.
    //
    //    Input, int LDT, the leading dimension of the array T.
    //
    //    Input, int N, the order of the matrix.
    //
    //    Output, double Z[N] a work vector whose contents are usually
    //    unimportant.  If T is close to a singular matrix, then Z is an
    //    approximate null vector in the sense that
    //      norm(A*Z) = RCOND * norm(A) * norm(Z).
    //
    //    Input, int JOB, indicates the shape of T:
    //    0, T is lower triangular.
    //    nonzero, T is upper triangular.
    //
    //    Output, double DTRCO, an estimate of the reciprocal condition RCOND
    //    of T.  For the system T*X = B, relative perturbations in T and B of size
    //    EPSILON may cause relative perturbations in X of size EPSILON/RCOND.
    //    If RCOND is so small that the logical expression
    //      1.0D+00 + RCOND == 1.0D+00
    //    is true, then T may be singular to working precision.  In particular,
    //    RCOND is zero if exact singularity is detected or the estimate underflows.
    //
    {
        int    i;
        int    i1;
        int    j;
        int    k;
        int    kk;
        double rcond;
        double s;
        double w;

        bool lower = job == 0;
        //
        //  Compute the 1-norm of T.
        //
        double tnorm = 0.0;

        for (j = 1; j <= n; j++)
        {
            int l;
            switch (lower)
            {
            case true:
                l  = n + 1 - j;
                i1 = j;
                break;

            default:
                l  = j;
                i1 = 1;
                break;
            }

            tnorm = Math.Max(tnorm, BLAS1D.dasum(l, t, 1, index: +i1 - 1 + (j - 1) * ldt));
        }

        //
        //  RCOND = 1/(norm(T)*(estimate of norm(inverse(T)))).
        //
        //  Estimate = norm(Z)/norm(Y) where T * Z = Y and T' * Y = E.
        //
        //  T' is the transpose of T.
        //
        //  The components of E are chosen to cause maximum local
        //  growth in the elements of Y.
        //
        //  The vectors are frequently rescaled to avoid overflow.
        //
        //  Solve T' * Y = E.
        //
        double ek = 1.0;

        for (i = 1; i <= n; i++)
        {
            z[i - 1] = 0.0;
        }

        for (kk = 1; kk <= n; kk++)
        {
            k = lower switch
            {
                true => n + 1 - kk,
                _ => kk
            };

            if (z[k - 1] != 0.0)
            {
                ek = typeMethods.r8_sign(-z[k - 1]) * ek;
            }

            if (Math.Abs(t[k - 1 + (k - 1) * ldt]) < Math.Abs(ek - z[k - 1]))
            {
                s = Math.Abs(t[k - 1 + (k - 1) * ldt]) / Math.Abs(ek - z[k - 1]);
                for (i = 1; i <= n; i++)
                {
                    z[i - 1] = s * z[i - 1];
                }

                ek = s * ek;
            }

            double wk  = ek - z[k - 1];
            double wkm = -ek - z[k - 1];
            s = Math.Abs(wk);
            double sm = Math.Abs(wkm);

            if (t[k - 1 + (k - 1) * ldt] != 0.0)
            {
                wk  /= t[k - 1 + (k - 1) * ldt];
                wkm /= t[k - 1 + (k - 1) * ldt];
            }
            else
            {
                wk  = 1.0;
                wkm = 1.0;
            }

            if (kk != n)
            {
                int j2;
                int j1;
                switch (lower)
                {
                case true:
                    j1 = 1;
                    j2 = k - 1;
                    break;

                default:
                    j1 = k + 1;
                    j2 = n;
                    break;
                }

                for (j = j1; j <= j2; j++)
                {
                    sm       += Math.Abs(z[j - 1] + wkm * t[k - 1 + (j - 1) * ldt]);
                    z[j - 1] += wk * t[k - 1 + (j - 1) * ldt];
                    s        += Math.Abs(z[j - 1]);
                }

                if (s < sm)
                {
                    w  = wkm - wk;
                    wk = wkm;
                    for (j = j1; j <= j2; j++)
                    {
                        z[j - 1] += w * t[k - 1 + (j - 1) * ldt];
                    }
                }
            }

            z[k - 1] = wk;
        }

        double temp = BLAS1D.dasum(n, z, 1);

        for (i = 1; i <= n; i++)
        {
            z[i - 1] /= temp;
        }

        double ynorm = 1.0;

        //
        //  Solve T * Z = Y.
        //
        for (kk = 1; kk <= n; kk++)
        {
            k = lower switch
            {
                true => kk,
                _ => n + 1 - kk
            };

            if (Math.Abs(t[k - 1 + (k - 1) * ldt]) < Math.Abs(z[k - 1]))
            {
                s = Math.Abs(t[k - 1 + (k - 1) * ldt]) / Math.Abs(z[k - 1]);
                for (i = 1; i <= n; i++)
                {
                    z[i - 1] = s * z[i - 1];
                }

                ynorm = s * ynorm;
            }

            if (t[k - 1 + (k - 1) * ldt] != 0.0)
            {
                z[k - 1] /= t[k - 1 + (k - 1) * ldt];
            }
            else
            {
                z[k - 1] = 1.0;
            }

            i1 = lower switch
            {
                true => k + 1,
                _ => 1
            };

            if (kk >= n)
            {
                continue;
            }

            w = -z[k - 1];
            BLAS1D.daxpy(n - kk, w, t, 1, ref z, 1, xIndex: +i1 - 1 + (k - 1) * ldt, yIndex: +i1 - 1);
        }

        //
        //  Make ZNORM = 1.0.
        //
        s = 1.0 / BLAS1D.dasum(n, z, 1);
        for (i = 1; i <= n; i++)
        {
            z[i - 1] = s * z[i - 1];
        }

        ynorm = s * ynorm;

        if (tnorm != 0.0)
        {
            rcond = ynorm / tnorm;
        }
        else
        {
            rcond = 0.0;
        }

        return(rcond);
    }
}
Exemplo n.º 9
0
    public static double dpbco(ref double[] abd, int lda, int n, int m, ref double[] z)

    //****************************************************************************80
    //
    //  Purpose:
    //
    //    DPBCO factors a real symmetric positive definite banded matrix.
    //
    //  Discussion:
    //
    //    DPBCO also estimates the condition of the matrix.
    //
    //    If RCOND is not needed, DPBFA is slightly faster.
    //
    //    To solve A*X = B, follow DPBCO by DPBSL.
    //
    //    To compute inverse(A)*C, follow DPBCO by DPBSL.
    //
    //    To compute determinant(A), follow DPBCO by DPBDI.
    //
    //  Band storage:
    //
    //    If A is a symmetric positive definite band matrix, the following
    //    program segment will set up the input.
    //
    //      m = (band width above diagonal)
    //      do j = 1, n
    //        i1 = max (1, j-m)
    //        do i = i1, j
    //          k = i-j+m+1
    //          abd(k,j) = a(i,j)
    //        }
    //      }
    //
    //    This uses M + 1 rows of A, except for the M by M upper left triangle,
    //    which is ignored.
    //
    //    For example, if the original matrix is
    //
    //      11 12 13  0  0  0
    //      12 22 23 24  0  0
    //      13 23 33 34 35  0
    //       0 24 34 44 45 46
    //       0  0 35 45 55 56
    //       0  0  0 46 56 66
    //
    //    then N = 6, M = 2  and ABD should contain
    //
    //       *  * 13 24 35 46
    //       * 12 23 34 45 56
    //      11 22 33 44 55 66
    //
    //  Licensing:
    //
    //    This code is distributed under the GNU LGPL license.
    //
    //  Modified:
    //
    //    07 June 2005
    //
    //  Author:
    //
    //    Original FORTRAN77 version by Jack Dongarra, Cleve Moler, Jim Bunch,
    //    Pete Stewart.
    //    C++ version by John Burkardt.
    //
    //  Reference:
    //
    //    Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart,
    //    LINPACK User's Guide,
    //    SIAM, (Society for Industrial and Applied Mathematics),
    //    3600 University City Science Center,
    //    Philadelphia, PA, 19104-2688.
    //    ISBN 0-89871-172-X
    //
    //  Parameters:
    //
    //    Input/output, double ABD[LDA*N].  On input, the matrix to be
    //    factored.  The columns of the upper triangle are stored in the columns
    //    of ABD and the diagonals of the upper triangle are stored in the rows
    //    of ABD.  On output, an upper triangular matrix R, stored in band form,
    //    so that A = R'*R.  If INFO /= 0, the factorization is not complete.
    //
    //    Input, int LDA, the leading dimension of the array ABD.
    //    M+1 <= LDA is required.
    //
    //    Input, int N, the order of the matrix.
    //
    //    Input, int M, the number of diagonals above the main diagonal.
    //
    //    Output, double Z[N], a work vector whose contents are usually
    //    unimportant.  If A is singular to working precision, then Z is an
    //    approximate null vector in the sense that
    //      norm(A*Z) = RCOND * norm(A) * norm(Z).
    //    If INFO /= 0, Z is unchanged.
    //
    //    Output, double DPBCO, an estimate of the reciprocal condition number
    //    RCOND.  For the system A*X = B, relative perturbations in A and B of size
    //    EPSILON may cause relative perturbations in X of size EPSILON/RCOND.
    //    If RCOND is so small that the logical expression
    //      1.0 + RCOND == 1.0D+00
    //    is true, then A may be singular to working precision.  In particular,
    //    RCOND is zero if exact singularity is detected or the estimate underflows.
    //
    {
        int    i;
        int    j;
        int    k;
        int    la;
        int    lb;
        int    lm;
        double rcond;
        double s;
        double t;

        //
        //  Find the norm of A.
        //
        for (j = 1; j <= n; j++)
        {
            int l  = Math.Min(j, m + 1);
            int mu = Math.Max(m + 2 - j, 1);
            z[j - 1] = BLAS1D.dasum(l, abd, 1, index: +mu - 1 + (j - 1) * lda);
            k        = j - l;
            for (i = mu; i <= m; i++)
            {
                k        += 1;
                z[k - 1] += Math.Abs(abd[i - 1 + (j - 1) * lda]);
            }
        }

        double anorm = 0.0;

        for (i = 1; i <= n; i++)
        {
            anorm = Math.Max(anorm, z[i - 1]);
        }

        //
        //  Factor.
        //
        int info = DPBFA.dpbfa(ref abd, lda, n, m);

        if (info != 0)
        {
            rcond = 0.0;
            return(rcond);
        }

        //
        //  RCOND = 1/(norm(A)*(estimate of norm(inverse(A)))).
        //
        //  Estimate = norm(Z)/norm(Y) where A*Z = Y and A*Y = E.
        //
        //  The components of E are chosen to cause maximum local
        //  growth in the elements of W where R'*W = E.
        //
        //  The vectors are frequently rescaled to avoid overflow.
        //
        //  Solve R' * W = E.
        //
        double ek = 1.0;

        for (i = 1; i <= n; i++)
        {
            z[i - 1] = 0.0;
        }

        for (k = 1; k <= n; k++)
        {
            if (z[k - 1] != 0.0)
            {
                ek *= typeMethods.r8_sign(-z[k - 1]);
            }

            if (abd[m + (k - 1) * lda] < Math.Abs(ek - z[k - 1]))
            {
                s = abd[m + (k - 1) * lda] / Math.Abs(ek - z[k - 1]);
                for (i = 1; i <= n; i++)
                {
                    z[i - 1] = s * z[i - 1];
                }

                ek = s * ek;
            }

            double wk  = ek - z[k - 1];
            double wkm = -ek - z[k - 1];
            s = Math.Abs(wk);
            double sm = Math.Abs(wkm);
            wk  /= abd[m + (k - 1) * lda];
            wkm /= abd[m + (k - 1) * lda];
            int j2 = Math.Min(k + m, n);
            i = m + 1;

            if (k + 1 <= j2)
            {
                for (j = k + 1; j <= j2; j++)
                {
                    i        -= 1;
                    sm       += Math.Abs(z[j - 1] + wkm * abd[i - 1 + (j - 1) * lda]);
                    z[j - 1] += wk * abd[i - 1 + (j - 1) * lda];
                    s        += Math.Abs(z[j - 1]);
                }

                if (s < sm)
                {
                    t  = wkm - wk;
                    wk = wkm;
                    i  = m + 1;

                    for (j = k + 1; j <= j2; j++)
                    {
                        i        -= 1;
                        z[j - 1] += t * abd[i - 1 + (j - 1) * lda];
                    }
                }
            }

            z[k - 1] = wk;
        }

        s = BLAS1D.dasum(n, z, 1);
        for (i = 1; i <= n; i++)
        {
            z[i - 1] /= s;
        }

        //
        //  Solve R * Y = W.
        //
        for (k = n; 1 <= k; k--)
        {
            if (abd[m + (k - 1) * lda] < Math.Abs(z[k - 1]))
            {
                s = abd[m + (k - 1) * lda] / Math.Abs(z[k - 1]);
                for (i = 1; i <= n; i++)
                {
                    z[i - 1] = s * z[i - 1];
                }
            }

            z[k - 1] /= abd[m + (k - 1) * lda];
            lm        = Math.Min(k - 1, m);
            la        = m + 1 - lm;
            lb        = k - lm;
            t         = -z[k - 1];
            BLAS1D.daxpy(lm, t, abd, 1, ref z, 1, xIndex: +la - 1 + (k - 1) * lda, yIndex: +lb - 1);
        }

        s = BLAS1D.dasum(n, z, 1);
        for (i = 1; i <= n; i++)
        {
            z[i - 1] /= s;
        }

        double ynorm = 1.0;

        //
        //  Solve R' * V = Y.
        //
        for (k = 1; k <= n; k++)
        {
            lm = Math.Min(k - 1, m);
            la = m + 1 - lm;
            lb = k - lm;

            z[k - 1] -= BLAS1D.ddot(lm, abd, 1, z, 1, xIndex:  +la - 1 + (k - 1) * lda, yIndex:  +lb - 1);

            if (abd[m + (k - 1) * lda] < Math.Abs(z[k - 1]))
            {
                s = abd[m + (k - 1) * lda] / Math.Abs(z[k - 1]);
                for (i = 1; i <= n; i++)
                {
                    z[i - 1] = s * z[i - 1];
                }

                ynorm = s * ynorm;
            }

            z[k - 1] /= abd[m + (k - 1) * lda];
        }

        s = 1.0 / BLAS1D.dasum(n, z, 1);
        for (i = 1; i <= n; i++)
        {
            z[i - 1] = s * z[i - 1];
        }

        ynorm = s * ynorm;
        //
        //  Solve R * Z = W.
        //
        for (k = n; 1 <= k; k--)
        {
            if (abd[m + (k - 1) * lda] < Math.Abs(z[k - 1]))
            {
                s = abd[m + (k - 1) * lda] / Math.Abs(z[k - 1]);
                for (i = 1; i <= n; i++)
                {
                    z[i - 1] = s * z[i - 1];
                }

                ynorm = s * ynorm;
            }

            z[k - 1] /= abd[m + (k - 1) * lda];
            lm        = Math.Min(k - 1, m);
            la        = m + 1 - lm;
            lb        = k - lm;
            t         = -z[k - 1];
            BLAS1D.daxpy(lm, t, abd, 1, ref z, 1, xIndex:  +la - 1 + (k - 1) * lda, yIndex:  +lb - 1);
        }

        //
        //  Make ZNORM = 1.0.
        //
        s = 1.0 / BLAS1D.dasum(n, z, 1);
        for (i = 1; i <= n; i++)
        {
            z[i - 1] = s * z[i - 1];
        }

        ynorm = s * ynorm;

        if (anorm != 0.0)
        {
            rcond = ynorm / anorm;
        }
        else
        {
            rcond = 0.0;
        }

        return(rcond);
    }