Exemplo n.º 1
0
            public override bool Equals(object obj)
            {
                if (this == obj)
                {
                    return(true);
                }
                if (obj == null)
                {
                    return(false);
                }
                if (GetType() != obj.GetType())
                {
                    return(false);
                }
                AveragedAnomalyRecordList other = (AveragedAnomalyRecordList)obj;

                if (AveragedRecords == null)
                {
                    if (other.AveragedRecords != null)
                    {
                        return(false);
                    }
                }
                else if (!AveragedRecords.Equals(other.AveragedRecords))
                {
                    return(false);
                }
                if (HistoricalValues == null)
                {
                    if (other.HistoricalValues != null)
                    {
                        return(false);
                    }
                }
                else if (!HistoricalValues.Equals(other.HistoricalValues))
                {
                    return(false);
                }
                if (BitConverter.DoubleToInt64Bits(Total) != BitConverter.DoubleToInt64Bits(other.Total))
                {
                    return(false);
                }
                return(true);
            }
Exemplo n.º 2
0
        /**
         * Given a series of anomaly scores, compute the likelihood for each score. This
         * function should be called once on a bunch of historical anomaly scores for an
         * initial estimate of the distribution. It should be called again every so often
         * (say every 50 records) to update the estimate.
         *
         * @param anomalyScores
         * @param averagingWindow
         * @param skipRecords
         * @return
         */
        public AnomalyLikelihoodMetrics EstimateAnomalyLikelihoods(List <Sample> anomalyScores, int averagingWindow, int skipRecords)
        {
            if (anomalyScores.Count == 0)
            {
                throw new ArgumentException("Must have at least one anomaly score.");
            }

            // Compute averaged anomaly scores
            AveragedAnomalyRecordList records = AnomalyScoreMovingAverage(anomalyScores, averagingWindow);

            // Estimate the distribution of anomaly scores based on aggregated records
            Statistic distribution;

            if (records.AveragedRecords.Count <= skipRecords)
            {
                distribution = NullDistribution();
            }
            else
            {
                List <double> samples = records.GetMetrics();
                distribution = EstimateNormal(samples.Skip(skipRecords).Take(samples.Count).ToArray(), true);

                /*  Taken from the Python Documentation
                 *
                 # HACK ALERT! The CLA model currently does not handle constant metric values
                 # very well (time of day encoder changes sometimes lead to unstable SDR's
                 # even though the metric is constant). Until this is resolved, we explicitly
                 # detect and handle completely flat metric values by reporting them as not
                 # anomalous.
                 #
                 */
                samples = records.GetSamples();
                Statistic metricDistribution = EstimateNormal(samples.Skip(skipRecords).Take(samples.Count).ToArray(), false);

                if (metricDistribution.variance < 1.5e-5)
                {
                    distribution = NullDistribution();
                }
            }

            // Estimate likelihoods based on this distribution
            int i = 0;

            double[] likelihoods = new double[records.AveragedRecords.Count];
            foreach (Sample sample in records.AveragedRecords)
            {
                likelihoods[i++] = NormalProbability(sample.score, distribution);
            }

            // Filter likelihood values
            double[] filteredLikelihoods = FilterLikelihoods(likelihoods);

            int len = likelihoods.Length;

            Parameters anomalyParameters = Parameters.Empty();

            anomalyParameters.SetParameterByKey(Parameters.KEY.ANOMALY_KEY_DIST, distribution);
            anomalyParameters.SetParameterByKey(Parameters.KEY.ANOMALY_KEY_MVG_AVG, new MovingAverage(records.HistoricalValues, records.Total, averagingWindow));
            anomalyParameters.SetParameterByKey(Parameters.KEY.ANOMALY_KEY_HIST_LIKE, len > 0 ? Arrays.CopyOfRange(likelihoods, len - Math.Min(averagingWindow, len), len) : new double[0]);

            AnomalyParams @params = new AnomalyParams(anomalyParameters);

            //AnomalyParams @params = new AnomalyParams(
            //    new string[] { "distribution", "movingAverage", "historicalLikelihoods" },
            //        distribution,
            //        new MovingAverage(records.historicalValues, records.total, averagingWindow),
            //        len > 0 ?
            //            Arrays.CopyOfRange(likelihoods, len - Math.Min(averagingWindow, len), len) :
            //                new double[0]);

            if (LOG.IsDebugEnabled)
            {
                LOG.Debug(string.Format("Discovered params={0} Number of likelihoods:{1}  First 20 likelihoods:{2}",
                                        @params, len, Arrays.CopyOfRange(filteredLikelihoods, 0, 20)));
            }

            return(new AnomalyLikelihoodMetrics(filteredLikelihoods, records, @params));
        }