Exemplo n.º 1
0
        /// <summary>
        /// Create an annealing trainer.
        /// </summary>
        /// <param name="method">The method to use.</param>
        /// <param name="training">The training data to use.</param>
        /// <param name="argsStr">The arguments to use.</param>
        /// <returns>The newly created trainer.</returns>
        public IMLTrain Create(IMLMethod method,
                               IMLDataSet training, String argsStr)
        {
            if (!(method is BasicNetwork))
            {
                throw new TrainingError(
                          "Invalid method type, requires BasicNetwork");
            }

            ICalculateScore score = new TrainingSetScore(training);

            IDictionary <String, String> args = ArchitectureParse.ParseParams(argsStr);
            var holder         = new ParamsHolder(args);
            int populationSize = holder.GetInt(
                MLTrainFactory.PropertyPopulationSize, false, 5000);

            IMLTrain train = new MLMethodGeneticAlgorithm(() =>
            {
                IMLMethod result = (IMLMethod)ObjectCloner.DeepCopy(method);
                ((IMLResettable)result).Reset();
                return(result);
            }, score, populationSize);

            return(train);
        }
Exemplo n.º 2
0
        /// <summary>
        /// Create an annealing trainer.
        /// </summary>
        ///
        /// <param name="method">The method to use.</param>
        /// <param name="training">The training data to use.</param>
        /// <param name="argsStr">The arguments to use.</param>
        /// <returns>The newly created trainer.</returns>
        public IMLTrain Create(IMLMethod method,
                               IMLDataSet training, String argsStr)
        {
            if (!(method is BasicNetwork))
            {
                throw new TrainingError(
                          "Invalid method type, requires BasicNetwork");
            }

            ICalculateScore score = new TrainingSetScore(training);

            IDictionary <String, String> args = ArchitectureParse.ParseParams(argsStr);
            var    holder    = new ParamsHolder(args);
            double startTemp = holder.GetDouble(
                MLTrainFactory.PropertyTemperatureStart, false, 10);
            double stopTemp = holder.GetDouble(
                MLTrainFactory.PropertyTemperatureStop, false, 2);

            int cycles = holder.GetInt(MLTrainFactory.Cycles, false, 100);

            IMLTrain train = new NeuralSimulatedAnnealing(
                (BasicNetwork)method, score, startTemp, stopTemp, cycles);

            return(train);
        }
Exemplo n.º 3
0
        /// <summary>
        /// Create a NEAT population.
        /// </summary>
        /// <param name="architecture">The architecture string to use.</param>
        /// <param name="input">The input count.</param>
        /// <param name="output">The output count.</param>
        /// <returns>The population.</returns>
        public IMLMethod Create(String architecture, int input,
                                int output)
        {
            if (input <= 0)
            {
                throw new EncogError("Must have at least one input for NEAT.");
            }

            if (output <= 0)
            {
                throw new EncogError("Must have at least one output for NEAT.");
            }

            IDictionary <String, String> args = ArchitectureParse.ParseParams(architecture);
            ParamsHolder holder = new ParamsHolder(args);

            int populationSize = holder.GetInt(
                MLMethodFactory.PropertyPopulationSize, false, 1000);

            int cycles = holder.GetInt(
                MLMethodFactory.PropertyCycles, false, NEATPopulation.DefaultCycles);

            IActivationFunction af = this.factory.Create(
                holder.GetString(MLMethodFactory.PropertyAF, false, MLActivationFactory.AF_SSIGMOID));

            NEATPopulation pop = new NEATPopulation(input, output, populationSize);

            pop.Reset();
            pop.ActivationCycles       = cycles;
            pop.NEATActivationFunction = af;

            return(pop);
        }
Exemplo n.º 4
0
        /// <summary>
        /// Create a SVM trainer.
        /// </summary>
        ///
        /// <param name="method">The method to use.</param>
        /// <param name="training">The training data to use.</param>
        /// <param name="argsStr">The arguments to use.</param>
        /// <returns>The newly created trainer.</returns>
        public IMLTrain Create(IMLMethod method,
                               IMLDataSet training, String argsStr)
        {
            if (!(method is SupportVectorMachine))
            {
                throw new EncogError(
                          "SVM Train training cannot be used on a method of type: "
                          + method.GetType().FullName);
            }

            double defaultGamma = 1.0d / ((SupportVectorMachine)method).InputCount;
            double defaultC     = 1.0d;

            IDictionary <String, String> args = ArchitectureParse.ParseParams(argsStr);
            var    holder = new ParamsHolder(args);
            double gamma  = holder.GetDouble(MLTrainFactory.PropertyGamma,
                                             false, defaultGamma);
            double c = holder.GetDouble(MLTrainFactory.PropertyC, false,
                                        defaultC);

            var result = new SVMTrain((SupportVectorMachine)method, training);

            result.Gamma = gamma;
            result.C     = c;
            return(result);
        }
Exemplo n.º 5
0
        /// <summary>
        /// Create an annealing trainer.
        /// </summary>
        ///
        /// <param name="method">The method to use.</param>
        /// <param name="training">The training data to use.</param>
        /// <param name="argsStr">The arguments to use.</param>
        /// <returns>The newly created trainer.</returns>
        public IMLTrain Create(IMLMethod method,
                               IMLDataSet training, String argsStr)
        {
            if (!(method is BasicNetwork))
            {
                throw new TrainingError(
                          "Invalid method type, requires BasicNetwork");
            }

            ICalculateScore score = new TrainingSetScore(training);

            IDictionary <String, String> args = ArchitectureParse.ParseParams(argsStr);
            var holder         = new ParamsHolder(args);
            int populationSize = holder.GetInt(
                MLTrainFactory.PropertyPopulationSize, false, 5000);
            double mutation = holder.GetDouble(
                MLTrainFactory.PropertyMutation, false, 0.1d);
            double mate = holder.GetDouble(MLTrainFactory.PropertyMate,
                                           false, 0.25d);

            IMLTrain train = new NeuralGeneticAlgorithm((BasicNetwork)method,
                                                        new RangeRandomizer(-1, 1), score, populationSize, mutation,
                                                        mate);

            return(train);
        }
Exemplo n.º 6
0
        /// <summary>
        /// Create a quick propagation trainer.
        /// </summary>
        /// <param name="method">The method to use.</param>
        /// <param name="training">The training data to use.</param>
        /// <param name="argsStr">The arguments to use.</param>
        /// <returns>The newly created trainer.</returns>
        public IMLTrain Create(IMLMethod method,
                               IMLDataSet training, String argsStr)
        {
            IDictionary <String, String> args = ArchitectureParse.ParseParams(argsStr);
            var holder = new ParamsHolder(args);

            double learningRate = holder.GetDouble(
                MLTrainFactory.PropertyLearningRate, false, 2.0);

            return(new QuickPropagation((BasicNetwork)method, training, learningRate));
        }
Exemplo n.º 7
0
        /// <summary>
        /// Create a Nelder Mead trainer.
        /// </summary>
        /// <param name="method">The method to use.</param>
        /// <param name="training">The training data to use.</param>
        /// <param name="argsStr">The arguments to use.</param>
        /// <returns>The newly created trainer.</returns>
        public IMLTrain Create(IMLMethod method,
                               IMLDataSet training, String argsStr)
        {
            IDictionary <String, String> args = ArchitectureParse.ParseParams(argsStr);
            var holder = new ParamsHolder(args);

            //final double learningRate = holder.getDouble(
            //		MLTrainFactory.PROPERTY_LEARNING_RATE, false, 0.1);

            return(new NelderMeadTraining((BasicNetwork)method, training));
        }
Exemplo n.º 8
0
        /// <summary>
        /// Create a PSO trainer.
        /// </summary>
        /// <param name="method">The method to use.</param>
        /// <param name="training">The training data to use.</param>
        /// <param name="argsStr">The arguments to use.</param>
        /// <returns>The newly created trainer.</returns>
        public IMLTrain Create(IMLMethod method,
                               IMLDataSet training, String argsStr)
        {
            IDictionary <String, String> args = ArchitectureParse.ParseParams(argsStr);
            ParamsHolder holder = new ParamsHolder(args);

            int particles = holder.GetInt(
                MLTrainFactory.PropertyParticles, false, 20);

            ICalculateScore score      = new TrainingSetScore(training);
            IRandomizer     randomizer = new NguyenWidrowRandomizer();

            IMLTrain train = new NeuralPSO((BasicNetwork)method, randomizer, score, particles);

            return(train);
        }
Exemplo n.º 9
0
        /// <summary>
        /// Create a LMA trainer.
        /// </summary>
        ///
        /// <param name="method">The method to use.</param>
        /// <param name="training">The training data to use.</param>
        /// <param name="argsStr">The arguments to use.</param>
        /// <returns>The newly created trainer.</returns>
        public IMLTrain Create(IMLMethod method,
                              IMLDataSet training, String argsStr)
        {
            if (!(method is BasicNetwork))
            {
                throw new EncogError(
                    "LMA training cannot be used on a method of type: "
                    + method.GetType().FullName);
            }

            IDictionary<String, String> args = ArchitectureParse.ParseParams(argsStr);
            var holder = new ParamsHolder(args);

            var result = new LevenbergMarquardtTraining(
                (BasicNetwork) method, training);
            return result;
        }
Exemplo n.º 10
0
        /// <summary>
        /// Create a feed forward network.
        /// </summary>
        /// <param name="architecture">The architecture string to use.</param>
        /// <param name="input">The input count.</param>
        /// <param name="output">The output count.</param>
        /// <returns>The feedforward network.</returns>
        public IMLMethod Create(String architecture, int input,
                                int output)
        {
            if (input <= 0)
            {
                throw new EncogError("Must have at least one input for EPL.");
            }

            if (output <= 0)
            {
                throw new EncogError("Must have at least one output for EPL.");
            }


            IDictionary <String, String> args = ArchitectureParse.ParseParams(architecture);
            var holder = new ParamsHolder(args);

            int populationSize = holder.GetInt(
                MLMethodFactory.PropertyPopulationSize, false, 1000);
            String variables = holder.GetString("vars", false, "x");
            String funct     = holder.GetString("funct", false, null);

            var context = new EncogProgramContext();

            string[] tok = variables.Split(',');
            foreach (string v in tok)
            {
                context.DefineVariable(v);
            }

            if (String.Compare("numeric", funct, StringComparison.OrdinalIgnoreCase) == 0)
            {
                StandardExtensions.CreateNumericOperators(context);
            }

            var pop = new PrgPopulation(context, populationSize);

            if (context.Functions.Count > 0)
            {
                (new RampedHalfAndHalf(context, 2, 6)).Generate(new EncogRandom(), pop);
            }
            return(pop);
        }
        /// <summary>
        /// Create a SVM trainer.
        /// </summary>
        ///
        /// <param name="method">The method to use.</param>
        /// <param name="training">The training data to use.</param>
        /// <param name="argsStr">The arguments to use.</param>
        /// <returns>The newly created trainer.</returns>
        public IMLTrain Create(IMLMethod method,
                               IMLDataSet training, String argsStr)
        {
            if (!(method is SupportVectorMachine))
            {
                throw new EncogError(
                          "SVM Train training cannot be used on a method of type: "
                          + method.GetType().FullName);
            }

            IDictionary <String, String> args = ArchitectureParse.ParseParams(argsStr);

            new ParamsHolder(args);

            var    holder     = new ParamsHolder(args);
            double gammaStart = holder.GetDouble(
                PropertyGamma1, false,
                SVMSearchTrain.DefaultGammaBegin);
            double cStart = holder.GetDouble(PropertyC1,
                                             false, SVMSearchTrain.DefaultConstBegin);
            double gammaStop = holder.GetDouble(
                PropertyGamma2, false,
                SVMSearchTrain.DefaultGammaEnd);
            double cStop = holder.GetDouble(PropertyC2,
                                            false, SVMSearchTrain.DefaultConstEnd);
            double gammaStep = holder.GetDouble(
                PropertyGammaStep, false,
                SVMSearchTrain.DefaultGammaStep);
            double cStep = holder.GetDouble(PropertyCStep,
                                            false, SVMSearchTrain.DefaultConstStep);

            var result = new SVMSearchTrain((SupportVectorMachine)method, training)
            {
                GammaBegin = gammaStart,
                GammaEnd   = gammaStop,
                GammaStep  = gammaStep,
                ConstBegin = cStart,
                ConstEnd   = cStop,
                ConstStep  = cStep
            };

            return(result);
        }
Exemplo n.º 12
0
        /// <summary>
        /// Create a RPROP trainer.
        /// </summary>
        ///
        /// <param name="method">The method to use.</param>
        /// <param name="training">The training data to use.</param>
        /// <param name="argsStr">The arguments to use.</param>
        /// <returns>The newly created trainer.</returns>
        public IMLTrain Create(IMLMethod method,
                               IMLDataSet training, String argsStr)
        {
            if (!(method is IContainsFlat))
            {
                throw new EncogError(
                          "RPROP training cannot be used on a method of type: "
                          + method.GetType().FullName);
            }

            IDictionary <String, String> args = ArchitectureParse.ParseParams(argsStr);
            var    holder        = new ParamsHolder(args);
            double initialUpdate = holder.GetDouble(
                MLTrainFactory.PropertyInitialUpdate, false,
                RPROPConst.DefaultInitialUpdate);
            double maxStep = holder.GetDouble(
                MLTrainFactory.PropertyMaxStep, false,
                RPROPConst.DefaultMaxStep);

            return(new ResilientPropagation((IContainsFlat)method, training,
                                            initialUpdate, maxStep));
        }
Exemplo n.º 13
0
        /// <summary>
        /// Create a LMA trainer.
        /// </summary>
        ///
        /// <param name="method">The method to use.</param>
        /// <param name="training">The training data to use.</param>
        /// <param name="argsStr">The arguments to use.</param>
        /// <returns>The newly created trainer.</returns>
        public IMLTrain Create(IMLMethod method,
                               IMLDataSet training, String argsStr)
        {
            if (!(method is BasicNetwork))
            {
                throw new EncogError(
                          "LMA training cannot be used on a method of type: "
                          + method.GetType().FullName);
            }

            IDictionary <String, String> args = ArchitectureParse.ParseParams(argsStr);
            var  holder = new ParamsHolder(args);
            bool useReg = holder.GetBoolean(
                MLTrainFactory.PropertyBayesianRegularization, false, false);

            var result = new LevenbergMarquardtTraining(
                (BasicNetwork)method, training)
            {
                UseBayesianRegularization = useReg
            };

            return(result);
        }
        /**
         * Create a K2 trainer.
         *
         * @param method
         *            The method to use.
         * @param training
         *            The training data to use.
         * @param argsStr
         *            The arguments to use.
         * @return The newly created trainer.
         */
        public IMLTrain Create(IMLMethod method,
                               IMLDataSet training, String argsStr)
        {
            IDictionary <String, String> args = ArchitectureParse.ParseParams(argsStr);
            ParamsHolder holder = new ParamsHolder(args);

            int maxParents = holder.GetInt(
                MLTrainFactory.PropertyMaxParents, false, 1);
            String searchStr    = holder.GetString("SEARCH", false, "k2");
            String estimatorStr = holder.GetString("ESTIMATOR", false, "simple");
            String initStr      = holder.GetString("INIT", false, "naive");

            IBayesSearch    search;
            IBayesEstimator estimator;
            BayesianInit    init;

            if (string.Compare(searchStr, "k2", true) == 0)
            {
                search = new SearchK2();
            }
            else if (string.Compare(searchStr, "none", true) == 0)
            {
                search = new SearchNone();
            }
            else
            {
                throw new BayesianError("Invalid search type: " + searchStr);
            }

            if (string.Compare(estimatorStr, "simple", true) == 0)
            {
                estimator = new SimpleEstimator();
            }
            else if (string.Compare(estimatorStr, "none", true) == 0)
            {
                estimator = new EstimatorNone();
            }
            else
            {
                throw new BayesianError("Invalid estimator type: " + estimatorStr);
            }

            if (string.Compare(initStr, "simple") == 0)
            {
                init = BayesianInit.InitEmpty;
            }
            else if (string.Compare(initStr, "naive") == 0)
            {
                init = BayesianInit.InitNaiveBayes;
            }
            else if (string.Compare(initStr, "none") == 0)
            {
                init = BayesianInit.InitNoChange;
            }
            else
            {
                throw new BayesianError("Invalid init type: " + initStr);
            }

            return(new TrainBayesian((BayesianNetwork)method, training, maxParents, init, search, estimator));
        }
        /// <summary>
        /// Create a LMA trainer.
        /// </summary>
        ///
        /// <param name="method">The method to use.</param>
        /// <param name="training">The training data to use.</param>
        /// <param name="argsStr">The arguments to use.</param>
        /// <returns>The newly created trainer.</returns>
        public IMLTrain Create(IMLMethod method,
                               IMLDataSet training, String argsStr)
        {
            if (!(method is SupportVectorMachine))
            {
                throw new EncogError(
                          "Neighborhood training cannot be used on a method of type: "
                          + method.GetType().FullName);
            }

            IDictionary <String, String> args = ArchitectureParse.ParseParams(argsStr);
            var holder = new ParamsHolder(args);

            double learningRate = holder.GetDouble(
                MLTrainFactory.PropertyLearningRate, false, 0.7d);
            String neighborhoodStr = holder.GetString(
                MLTrainFactory.PropertyNeighborhood, false, "rbf");
            String rbfTypeStr = holder.GetString(
                MLTrainFactory.PropertyRBFType, false, "gaussian");

            RBFEnum t;

            if (rbfTypeStr.Equals("Gaussian", StringComparison.InvariantCultureIgnoreCase))
            {
                t = RBFEnum.Gaussian;
            }
            else if (rbfTypeStr.Equals("Multiquadric", StringComparison.InvariantCultureIgnoreCase))
            {
                t = RBFEnum.Multiquadric;
            }
            else if (rbfTypeStr.Equals("InverseMultiquadric", StringComparison.InvariantCultureIgnoreCase))
            {
                t = RBFEnum.InverseMultiquadric;
            }
            else if (rbfTypeStr.Equals("MexicanHat", StringComparison.InvariantCultureIgnoreCase))
            {
                t = RBFEnum.MexicanHat;
            }
            else
            {
                t = RBFEnum.Gaussian;
            }

            INeighborhoodFunction nf = null;

            if (neighborhoodStr.Equals("bubble", StringComparison.InvariantCultureIgnoreCase))
            {
                nf = new NeighborhoodBubble(1);
            }
            else if (neighborhoodStr.Equals("rbf", StringComparison.InvariantCultureIgnoreCase))
            {
                String str = holder.GetString(
                    MLTrainFactory.PropertyDimensions, true, null);
                int[] size = NumberList.FromListInt(CSVFormat.EgFormat, str);
                nf = new NeighborhoodRBF(size, t);
            }
            else if (neighborhoodStr.Equals("rbf1d", StringComparison.InvariantCultureIgnoreCase))
            {
                nf = new NeighborhoodRBF1D(t);
            }
            if (neighborhoodStr.Equals("single", StringComparison.InvariantCultureIgnoreCase))
            {
                nf = new NeighborhoodSingle();
            }

            var result = new BasicTrainSOM((SOMNetwork)method,
                                           learningRate, training, nf);

            if (args.ContainsKey(MLTrainFactory.PropertyIterations))
            {
                int plannedIterations = holder.GetInt(
                    MLTrainFactory.PropertyIterations, false, 1000);
                double startRate = holder.GetDouble(
                    MLTrainFactory.PropertyStartLearningRate, false, 0.05d);
                double endRate = holder.GetDouble(
                    MLTrainFactory.PropertyEndLearningRate, false, 0.05d);
                double startRadius = holder.GetDouble(
                    MLTrainFactory.PropertyStartRadius, false, 10);
                double endRadius = holder.GetDouble(
                    MLTrainFactory.PropertyEndRadius, false, 1);
                result.SetAutoDecay(plannedIterations, startRate, endRate,
                                    startRadius, endRadius);
            }

            return(result);
        }