/// <summary> /// Mengestimasi parameter /// </summary> private void EstimateParameters() { if (this.sesRdb.Checked == true) { if (this.variable.SeriesValuesNoNaN.Count < 7) { MessageBox.Show("Unsufficent number of observations", "Exponential Smoothing", MessageBoxButtons.OK, MessageBoxIcon.Error); this.DialogResult = DialogResult.None; return; } //get alpha try { this.esProperties.alpha = double.Parse(this.alpha.Text); } catch { this.esProperties.alpha = 0.2; } this.esProperties.initialModel = 1; ses = new SingleExponentialSmoothing(this.variable, this.esProperties.alpha, this.singleInitialSmoothed); this.esTable.smoothed = ses.Smoothed; this.esTable.predicted = ses.Predicted; this.esTable.residual = ses.Residual; this.esProperties.includedObservations = ses.IncludedObservations; this.esProperties.sseES = ses.SSE; this.esProperties.mseES = ses.MSE; this.esProperties.maeES = ses.MAE; this.esProperties.mpeES = ses.MPE; this.esProperties.mapeES = ses.MAPE; } else if (this.brownRdb.Checked == true) { //get alpha try { this.esProperties.alpha = double.Parse(this.alpha.Text); } catch { this.esProperties.alpha = 0.2; } this.esProperties.initialModel = 2; brown = new DoubleExponentialSmoothingBrown(this.variable, this.esProperties.alpha); this.esTable.smoothed = brown.Smoothed; this.esTable.predicted = brown.Predicted; this.esTable.residual = brown.Residual; this.esProperties.includedObservations = brown.IncludedObservations; this.esProperties.sseES = brown.SSE; this.esProperties.mseES = brown.MSE; this.esProperties.maeES = brown.MAE; this.esProperties.mpeES = brown.MPE; this.esProperties.mapeES = brown.MAPE; } else if (this.holtRdb.Checked == true) { //get alpha try { this.esProperties.alpha = double.Parse(this.alpha.Text); } catch { this.esProperties.alpha = 0.2; } //get gamma try { this.esProperties.gamma = double.Parse(this.gamma.Text); } catch { this.esProperties.gamma = 0.2; } this.esProperties.initialModel = 3; holt = new DoubleExponentialSmoothingHolt(this.variable, this.esProperties.alpha, this.esProperties.gamma); this.esTable.smoothed = holt.Smoothed; this.esTable.trend = holt.Trend; this.esTable.predicted = holt.Predicted; this.esTable.residual = holt.Residual; this.esProperties.includedObservations = holt.IncludedObservations; this.esProperties.sseES = holt.SSE; this.esProperties.mseES = holt.MSE; this.esProperties.maeES = holt.MAE; this.esProperties.mpeES = holt.MPE; this.esProperties.mapeES = holt.MAPE; } else if (this.winterRdb.Checked == true) { if (this.variable.SeriesValuesNoNaN.Count < 4) { MessageBox.Show("Unsufficent number of observations", "Exponential Smoothing", MessageBoxButtons.OK, MessageBoxIcon.Error); this.DialogResult = DialogResult.None; return; } //get alpha try { this.esProperties.alpha = double.Parse(this.alpha.Text); } catch { this.esProperties.alpha = 0.2; } //get gamma try { this.esProperties.gamma = double.Parse(this.gamma.Text); } catch { this.esProperties.gamma = 0.2; } //get beta try { this.esProperties.beta = double.Parse(this.beta.Text); } catch { this.esProperties.beta = 0.2; } //get seasonal length try { this.esProperties.seasonalLength = int.Parse(this.seasonalBox.Text); } catch { this.esProperties.seasonalLength = 2; } this.esProperties.initialModel = 4; winter = new TripleExponentialSmoothingWinter(this.variable, this.esProperties.alpha, this.esProperties.gamma, this.esProperties.beta, this.esProperties.seasonalLength, this.esProperties.isMultiplicative); this.esTable.smoothed = winter.Smoothed; this.esTable.trend = winter.Trend; this.esTable.seasonal = winter.Seasonal; this.esTable.predicted = winter.Predicted; this.esTable.residual = winter.Residual; this.esProperties.includedObservations = winter.IncludedObservations; this.esProperties.sseES = winter.SSE; this.esProperties.mseES = winter.MSE; this.esProperties.maeES = winter.MAE; this.esProperties.mpeES = winter.MPE; this.esProperties.mapeES = winter.MAPE; } }
/// <summary> /// Mengestimasi parameter /// </summary> private void EstimateParameters() { if (this.sesRdb.Checked == true) { if (this.variable.SeriesValuesNoNaN.Count < 7) { MessageBox.Show("Unsufficent number of observations", "Exponential Smoothing", MessageBoxButtons.OK, MessageBoxIcon.Error); this.DialogResult = DialogResult.None; return; } //get alpha try { this.esProperties.alpha = double.Parse(this.alpha.Text); } catch { this.esProperties.alpha = 0.2; } this.esProperties.initialModel = 1; ses = new SingleExponentialSmoothing(this.variable, this.esProperties.alpha,this.singleInitialSmoothed); this.esTable.smoothed = ses.Smoothed; this.esTable.predicted = ses.Predicted; this.esTable.residual = ses.Residual; this.esProperties.includedObservations = ses.IncludedObservations; this.esProperties.sseES = ses.SSE; this.esProperties.mseES = ses.MSE; this.esProperties.maeES = ses.MAE; this.esProperties.mpeES = ses.MPE; this.esProperties.mapeES = ses.MAPE; } else if (this.brownRdb.Checked == true) { //get alpha try { this.esProperties.alpha = double.Parse(this.alpha.Text); } catch { this.esProperties.alpha = 0.2; } this.esProperties.initialModel = 2; brown = new DoubleExponentialSmoothingBrown(this.variable, this.esProperties.alpha); this.esTable.smoothed = brown.Smoothed; this.esTable.predicted = brown.Predicted; this.esTable.residual = brown.Residual; this.esProperties.includedObservations = brown.IncludedObservations; this.esProperties.sseES = brown.SSE; this.esProperties.mseES = brown.MSE; this.esProperties.maeES = brown.MAE; this.esProperties.mpeES = brown.MPE; this.esProperties.mapeES = brown.MAPE; } else if (this.holtRdb.Checked == true) { //get alpha try { this.esProperties.alpha = double.Parse(this.alpha.Text); } catch { this.esProperties.alpha = 0.2; } //get gamma try { this.esProperties.gamma = double.Parse(this.gamma.Text); } catch { this.esProperties.gamma = 0.2; } this.esProperties.initialModel = 3; holt = new DoubleExponentialSmoothingHolt(this.variable, this.esProperties.alpha, this.esProperties.gamma); this.esTable.smoothed = holt.Smoothed; this.esTable.trend = holt.Trend; this.esTable.predicted = holt.Predicted; this.esTable.residual = holt.Residual; this.esProperties.includedObservations = holt.IncludedObservations; this.esProperties.sseES = holt.SSE; this.esProperties.mseES = holt.MSE; this.esProperties.maeES = holt.MAE; this.esProperties.mpeES = holt.MPE; this.esProperties.mapeES = holt.MAPE; } else if (this.winterRdb.Checked == true) { if (this.variable.SeriesValuesNoNaN.Count < 4) { MessageBox.Show("Unsufficent number of observations", "Exponential Smoothing", MessageBoxButtons.OK, MessageBoxIcon.Error); this.DialogResult = DialogResult.None; return; } //get alpha try { this.esProperties.alpha = double.Parse(this.alpha.Text); } catch { this.esProperties.alpha = 0.2; } //get gamma try { this.esProperties.gamma = double.Parse(this.gamma.Text); } catch { this.esProperties.gamma = 0.2; } //get beta try { this.esProperties.beta = double.Parse(this.beta.Text); } catch { this.esProperties.beta = 0.2; } //get seasonal length try { this.esProperties.seasonalLength = int.Parse(this.seasonalBox.Text); } catch { this.esProperties.seasonalLength = 2; } this.esProperties.initialModel = 4; winter = new TripleExponentialSmoothingWinter(this.variable, this.esProperties.alpha, this.esProperties.gamma, this.esProperties.beta, this.esProperties.seasonalLength, this.esProperties.isMultiplicative); this.esTable.smoothed = winter.Smoothed; this.esTable.trend = winter.Trend; this.esTable.seasonal = winter.Seasonal; this.esTable.predicted = winter.Predicted; this.esTable.residual = winter.Residual; this.esProperties.includedObservations = winter.IncludedObservations; this.esProperties.sseES = winter.SSE; this.esProperties.mseES = winter.MSE; this.esProperties.maeES = winter.MAE; this.esProperties.mpeES = winter.MPE; this.esProperties.mapeES = winter.MAPE; } }
private void GridSearch() { double alphaStart = (double)this.alphaStartUpDown.Value; double alphaStop = (double)this.alphaStopUpDown.Value; double alphaIncrement = (double)this.alphaIncrementUpDown.Value; double currentAlpha = alphaStart; double solutionCount = double.Parse(solutionBox.Text); double maxSolutionsCriterion = 0; int maxSolutionIndex = -1; int increment = 0; while (currentAlpha <= alphaStop) { SingleExponentialSmoothing ses = new SingleExponentialSmoothing(variable, currentAlpha); double mse = ses.MSE; // Masukkan sejumlah solutionCount solusi pertama ke list if (solutions.Count < solutionCount) { solutions.Add(ses); if (ses.MSE > maxSolutionsCriterion) { maxSolutionsCriterion = ses.MSE; maxSolutionIndex = solutions.Count - 1; } } // list solusi sudah penuh else { // jika lebih kecil dari MSE terbesar pada list, ganti solusi terbesar itu // dengan solusi ini if (ses.MSE < maxSolutionsCriterion) { solutions[maxSolutionIndex] = ses; maxSolutionIndex = this.FindMaximumCriterionIndex(solutions); maxSolutionsCriterion = solutions[maxSolutionIndex].MSE; } } currentAlpha += alphaIncrement; ++increment; } //this.textBox2.Visible = true; //this.textBox2.Text = increment.ToString(); // urutkan berdasarkan mse solutions.Sort(delegate(SingleExponentialSmoothing ses1, SingleExponentialSmoothing ses2) { return ses1.MSE.CompareTo(ses2.MSE); }); this.resultGrid.RowCount = solutions.Count; // tampilkan ke grid for (int i = 0; i < solutions.Count; i++) { int row = i + 1; this.resultGrid.Rows[i].HeaderCell.Value = row.ToString(); this.resultGrid[0, i].Value = solutions[i].Alpha.ToString("F3"); this.resultGrid[1, i].Value = solutions[i].MAE.ToString("F5"); this.resultGrid[2, i].Value = solutions[i].MSE.ToString("F5"); this.resultGrid[3, i].Value = solutions[i].MPE.ToString("F5"); this.resultGrid[4, i].Value = solutions[i].MAPE.ToString("F5"); } }
private void GridSearch() { double alphaStart = (double)this.alphaStartUpDown.Value; double alphaStop = (double)this.alphaStopUpDown.Value; double alphaIncrement = (double)this.alphaIncrementUpDown.Value; double currentAlpha = alphaStart; double solutionCount = double.Parse(solutionBox.Text); double maxSolutionsCriterion = 0; int maxSolutionIndex = -1; int increment = 0; while (currentAlpha <= alphaStop) { SingleExponentialSmoothing ses = new SingleExponentialSmoothing(variable, currentAlpha); double mse = ses.MSE; // Masukkan sejumlah solutionCount solusi pertama ke list if (solutions.Count < solutionCount) { solutions.Add(ses); if (ses.MSE > maxSolutionsCriterion) { maxSolutionsCriterion = ses.MSE; maxSolutionIndex = solutions.Count - 1; } } // list solusi sudah penuh else { // jika lebih kecil dari MSE terbesar pada list, ganti solusi terbesar itu // dengan solusi ini if (ses.MSE < maxSolutionsCriterion) { solutions[maxSolutionIndex] = ses; maxSolutionIndex = this.FindMaximumCriterionIndex(solutions); maxSolutionsCriterion = solutions[maxSolutionIndex].MSE; } } currentAlpha += alphaIncrement; ++increment; } //this.textBox2.Visible = true; //this.textBox2.Text = increment.ToString(); // urutkan berdasarkan mse solutions.Sort(delegate(SingleExponentialSmoothing ses1, SingleExponentialSmoothing ses2) { return(ses1.MSE.CompareTo(ses2.MSE)); }); this.resultGrid.RowCount = solutions.Count; // tampilkan ke grid for (int i = 0; i < solutions.Count; i++) { int row = i + 1; this.resultGrid.Rows[i].HeaderCell.Value = row.ToString(); this.resultGrid[0, i].Value = solutions[i].Alpha.ToString("F3"); this.resultGrid[1, i].Value = solutions[i].MAE.ToString("F5"); this.resultGrid[2, i].Value = solutions[i].MSE.ToString("F5"); this.resultGrid[3, i].Value = solutions[i].MPE.ToString("F5"); this.resultGrid[4, i].Value = solutions[i].MAPE.ToString("F5"); } }