internal void ReadCache(ref SimplexCache cache, ref DistanceProxy proxyA, ref Transform transformA, ref DistanceProxy proxyB, ref Transform transformB) { Debug.Assert(cache.Count <= 3); // Copy data from cache. Count = cache.Count; for (int i = 0; i < Count; ++i) { SimplexVertex v = V[i]; v.IndexA = cache.IndexA[i]; v.IndexB = cache.IndexB[i]; Vector2 wALocal = proxyA.Vertices[v.IndexA]; Vector2 wBLocal = proxyB.Vertices[v.IndexB]; v.WA = Transform.Multiply(ref wALocal, ref transformA); v.WB = Transform.Multiply(ref wBLocal, ref transformB); v.W = v.WB - v.WA; v.A = 0.0f; V[i] = v; } // Compute the new simplex metric, if it is substantially different than // old metric then flush the simplex. if (Count > 1) { float metric1 = cache.Metric; float metric2 = GetMetric(); if (metric2 < 0.5f * metric1 || 2.0f * metric1 < metric2 || metric2 < Settings.Epsilon) { // Reset the simplex. Count = 0; } } // If the cache is empty or invalid ... if (Count == 0) { SimplexVertex v = V[0]; v.IndexA = 0; v.IndexB = 0; Vector2 wALocal = proxyA.Vertices[0]; Vector2 wBLocal = proxyB.Vertices[0]; v.WA = Transform.Multiply(ref wALocal, ref transformA); v.WB = Transform.Multiply(ref wBLocal, ref transformB); v.W = v.WB - v.WA; v.A = 1.0f; V[0] = v; Count = 1; } }
public static void Set(ref SimplexCache cache, ref DistanceProxy proxyA, ref Sweep sweepA, ref DistanceProxy proxyB, ref Sweep sweepB, float t1) { _localPoint = Vector2.Zero; _proxyA = proxyA; _proxyB = proxyB; int count = cache.Count; Debug.Assert(0 < count && count < 3); _sweepA = sweepA; _sweepB = sweepB; Transform xfA, xfB; _sweepA.GetTransform(out xfA, t1); _sweepB.GetTransform(out xfB, t1); if (count == 1) { _type = SeparationFunctionType.Points; Vector2 localPointA = _proxyA.Vertices[cache.IndexA[0]]; Vector2 localPointB = _proxyB.Vertices[cache.IndexB[0]]; Vector2 pointA = Transform.Multiply(ref localPointA, ref xfA); Vector2 pointB = Transform.Multiply(ref localPointB, ref xfB); _axis = pointB - pointA; _axis.Normalize(); } else if (cache.IndexA[0] == cache.IndexA[1]) { // Two points on B and one on A. _type = SeparationFunctionType.FaceB; Vector2 localPointB1 = proxyB.Vertices[cache.IndexB[0]]; Vector2 localPointB2 = proxyB.Vertices[cache.IndexB[1]]; Vector2 a = localPointB2 - localPointB1; _axis = new Vector2(a.Y, -a.X); _axis.Normalize(); Vector2 normal = Complex.Multiply(ref _axis, ref xfB.q); _localPoint = 0.5f * (localPointB1 + localPointB2); Vector2 pointB = Transform.Multiply(ref _localPoint, ref xfB); Vector2 localPointA = proxyA.Vertices[cache.IndexA[0]]; Vector2 pointA = Transform.Multiply(ref localPointA, ref xfA); float s = Vector2.Dot(pointA - pointB, normal); if (s < 0.0f) { _axis = -_axis; } } else { // Two points on A and one or two points on B. _type = SeparationFunctionType.FaceA; Vector2 localPointA1 = _proxyA.Vertices[cache.IndexA[0]]; Vector2 localPointA2 = _proxyA.Vertices[cache.IndexA[1]]; Vector2 a = localPointA2 - localPointA1; _axis = new Vector2(a.Y, -a.X); _axis.Normalize(); Vector2 normal = Complex.Multiply(ref _axis, ref xfA.q); _localPoint = 0.5f * (localPointA1 + localPointA2); Vector2 pointA = Transform.Multiply(ref _localPoint, ref xfA); Vector2 localPointB = _proxyB.Vertices[cache.IndexB[0]]; Vector2 pointB = Transform.Multiply(ref localPointB, ref xfB); float s = Vector2.Dot(pointB - pointA, normal); if (s < 0.0f) { _axis = -_axis; } } }