/** * */ private void generateKeyPair() { BigInteger p, g, x, y; int qLength = strength - 1; p = parameter.P; g = parameter.G; // // berechne den private key // x = new BigInteger(); x.genRandomBits(qLength, random); // // berechne den public key. // y = g.modPow(x, p); this.publicKey = new PublicKey(y, parameter); this.privateKey = new PrivateKey(x, parameter); }
//*********************************************************************** // Returns a string representing the BigInteger in sign-and-magnitude // format in the specified radix. // // Example // ------- // If the value of BigInteger is -255 in base 10, then // ToString(16) returns "-FF" // //*********************************************************************** public string ToString(int radix) { if(radix < 2 || radix > 36) throw (new ArgumentException("Radix must be >= 2 and <= 36")); string charSet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"; string result = ""; BigInteger a = this; bool negative = false; if((a.data[maxLength-1] & 0x80000000) != 0) { negative = true; try { a = -a; } catch(Exception) {} } BigInteger quotient = new BigInteger(); BigInteger remainder = new BigInteger(); BigInteger biRadix = new BigInteger(radix); if(a.dataLength == 1 && a.data[0] == 0) result = "0"; else { while(a.dataLength > 1 || (a.dataLength == 1 && a.data[0] != 0)) { singleByteDivide(a, biRadix, quotient, remainder); if(remainder.data[0] < 10) result = remainder.data[0] + result; else result = charSet[(int)remainder.data[0] - 10] + result; a = quotient; } if(negative) result = "-" + result; } return result; }
/** * * <param name="x"/> * <param name="params"/> */ public PrivateKey(BigInteger x, Parameter parameter) : base(true, parameter) { this.x = x; }
//*********************************************************************** // Overloading of the NEGATE operator (2's complement) //*********************************************************************** public static BigInteger operator -(BigInteger bi1) { // handle neg of zero separately since it'll cause an overflow // if we proceed. if(bi1.dataLength == 1 && bi1.data[0] == 0) return (new BigInteger()); BigInteger result = new BigInteger(bi1); // 1's complement for(int i = 0; i < maxLength; i++) result.data[i] = (uint)(~(bi1.data[i])); // add one to result of 1's complement long val, carry = 1; int index = 0; while(carry != 0 && index < maxLength) { val = (long)(result.data[index]); val++; result.data[index] = (uint)(val & 0xFFFFFFFF); carry = val >> 32; index++; } if((bi1.data[maxLength-1] & 0x80000000) == (result.data[maxLength-1] & 0x80000000)) throw (new ArithmeticException("Overflow in negation.\n")); result.dataLength = maxLength; while(result.dataLength > 1 && result.data[result.dataLength-1] == 0) result.dataLength--; return result; }
//*********************************************************************** // Overloading of unary >> operators //*********************************************************************** public static BigInteger operator >>(BigInteger bi1, int shiftVal) { BigInteger result = new BigInteger(bi1); result.dataLength = shiftRight(result.data, shiftVal); if((bi1.data[maxLength-1] & 0x80000000) != 0) // negative { for(int i = maxLength - 1; i >= result.dataLength; i--) result.data[i] = 0xFFFFFFFF; uint mask = 0x80000000; for(int i = 0; i < 32; i++) { if((result.data[result.dataLength-1] & mask) != 0) break; result.data[result.dataLength-1] |= mask; mask >>= 1; } result.dataLength = maxLength; } return result; }
//*********************************************************************** // Overloading of multiplication operator //*********************************************************************** public static BigInteger operator *(BigInteger bi1, BigInteger bi2) { int lastPos = maxLength-1; bool bi1Neg = false, bi2Neg = false; // take the absolute value of the inputs try { if((bi1.data[lastPos] & 0x80000000) != 0) // bi1 negative { bi1Neg = true; bi1 = -bi1; } if((bi2.data[lastPos] & 0x80000000) != 0) // bi2 negative { bi2Neg = true; bi2 = -bi2; } } catch(Exception) {} BigInteger result = new BigInteger(); // multiply the absolute values try { for(int i = 0; i < bi1.dataLength; i++) { if(bi1.data[i] == 0) continue; ulong mcarry = 0; for(int j = 0, k = i; j < bi2.dataLength; j++, k++) { // k = i + j ulong val = ((ulong)bi1.data[i] * (ulong)bi2.data[j]) + (ulong)result.data[k] + mcarry; result.data[k] = (uint)(val & 0xFFFFFFFF); mcarry = (val >> 32); } if(mcarry != 0) result.data[i+bi2.dataLength] = (uint)mcarry; } } catch(Exception) { throw(new ArithmeticException("Multiplication overflow.")); } result.dataLength = bi1.dataLength + bi2.dataLength; if(result.dataLength > maxLength) result.dataLength = maxLength; while(result.dataLength > 1 && result.data[result.dataLength-1] == 0) result.dataLength--; // overflow check (result is -ve) if((result.data[lastPos] & 0x80000000) != 0) { if(bi1Neg != bi2Neg && result.data[lastPos] == 0x80000000) // different sign { // handle the special case where multiplication produces // a max negative number in 2's complement. if(result.dataLength == 1) return result; else { bool isMaxNeg = true; for(int i = 0; i < result.dataLength - 1 && isMaxNeg; i++) { if(result.data[i] != 0) isMaxNeg = false; } if(isMaxNeg) return result; } } throw(new ArithmeticException("Multiplication overflow.")); } // if input has different signs, then result is -ve if(bi1Neg != bi2Neg) return -result; return result; }
//*********************************************************************** // Overloading of subtraction operator //*********************************************************************** public static BigInteger operator -(BigInteger bi1, BigInteger bi2) { BigInteger result = new BigInteger(); result.dataLength = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength; long carryIn = 0; for(int i = 0; i < result.dataLength; i++) { long diff; diff = (long)bi1.data[i] - (long)bi2.data[i] - carryIn; result.data[i] = (uint)(diff & 0xFFFFFFFF); if(diff < 0) carryIn = 1; else carryIn = 0; } // roll over to negative if(carryIn != 0) { for(int i = result.dataLength; i < maxLength; i++) result.data[i] = 0xFFFFFFFF; result.dataLength = maxLength; } // fixed in v1.03 to give correct datalength for a - (-b) while(result.dataLength > 1 && result.data[result.dataLength-1] == 0) result.dataLength--; // overflow check int lastPos = maxLength - 1; if((bi1.data[lastPos] & 0x80000000) != (bi2.data[lastPos] & 0x80000000) && (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000)) { throw (new ArithmeticException()); } return result; }
//*********************************************************************** // Overloading of addition operator //*********************************************************************** public static BigInteger operator +(BigInteger bi1, BigInteger bi2) { BigInteger result = new BigInteger(); result.dataLength = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength; long carry = 0; for(int i = 0; i < result.dataLength; i++) { long sum = (long)bi1.data[i] + (long)bi2.data[i] + carry; carry = sum >> 32; result.data[i] = (uint)(sum & 0xFFFFFFFF); } if(carry != 0 && result.dataLength < maxLength) { result.data[result.dataLength] = (uint)(carry); result.dataLength++; } while(result.dataLength > 1 && result.data[result.dataLength-1] == 0) result.dataLength--; // overflow check int lastPos = maxLength - 1; if((bi1.data[lastPos] & 0x80000000) == (bi2.data[lastPos] & 0x80000000) && (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000)) { throw (new ArithmeticException()); } return result; }
private bool LucasStrongTestHelper(BigInteger thisVal) { // Do the test (selects D based on Selfridge) // Let D be the first element of the sequence // 5, -7, 9, -11, 13, ... for which J(D,n) = -1 // Let P = 1, Q = (1-D) / 4 long D = 5, sign = -1, dCount = 0; bool done = false; while(!done) { int Jresult = BigInteger.Jacobi(D, thisVal); if(Jresult == -1) done = true; // J(D, this) = 1 else { if(Jresult == 0 && Math.Abs(D) < thisVal) // divisor found return false; if(dCount == 20) { // check for square BigInteger root = thisVal.sqrt(); if(root * root == thisVal) return false; } //Console.WriteLine(D); D = (Math.Abs(D) + 2) * sign; sign = -sign; } dCount++; } long Q = (1 - D) >> 2; /* Console.WriteLine("D = " + D); Console.WriteLine("Q = " + Q); Console.WriteLine("(n,D) = " + thisVal.gcd(D)); Console.WriteLine("(n,Q) = " + thisVal.gcd(Q)); Console.WriteLine("J(D|n) = " + BigInteger.Jacobi(D, thisVal)); */ BigInteger p_add1 = thisVal + 1; int s = 0; for(int index = 0; index < p_add1.dataLength; index++) { uint mask = 0x01; for(int i = 0; i < 32; i++) { if((p_add1.data[index] & mask) != 0) { index = p_add1.dataLength; // to break the outer loop break; } mask <<= 1; s++; } } BigInteger t = p_add1 >> s; // calculate constant = b^(2k) / m // for Barrett Reduction BigInteger constant = new BigInteger(); int nLen = thisVal.dataLength << 1; constant.data[nLen] = 0x00000001; constant.dataLength = nLen + 1; constant = constant / thisVal; BigInteger[] lucas = LucasSequenceHelper(1, Q, t, thisVal, constant, 0); bool isPrime = false; if((lucas[0].dataLength == 1 && lucas[0].data[0] == 0) || (lucas[1].dataLength == 1 && lucas[1].data[0] == 0)) { // u(t) = 0 or V(t) = 0 isPrime = true; } for(int i = 1; i < s; i++) { if(!isPrime) { // doubling of index lucas[1] = thisVal.BarrettReduction(lucas[1] * lucas[1], thisVal, constant); lucas[1] = (lucas[1] - (lucas[2] << 1)) % thisVal; //lucas[1] = ((lucas[1] * lucas[1]) - (lucas[2] << 1)) % thisVal; if((lucas[1].dataLength == 1 && lucas[1].data[0] == 0)) isPrime = true; } lucas[2] = thisVal.BarrettReduction(lucas[2] * lucas[2], thisVal, constant); //Q^k } if(isPrime) // additional checks for composite numbers { // If n is prime and gcd(n, Q) == 1, then // Q^((n+1)/2) = Q * Q^((n-1)/2) is congruent to (Q * J(Q, n)) mod n BigInteger g = thisVal.gcd(Q); if(g.dataLength == 1 && g.data[0] == 1) // gcd(this, Q) == 1 { if((lucas[2].data[maxLength-1] & 0x80000000) != 0) lucas[2] += thisVal; BigInteger temp = (Q * BigInteger.Jacobi(Q, thisVal)) % thisVal; if((temp.data[maxLength-1] & 0x80000000) != 0) temp += thisVal; if(lucas[2] != temp) isPrime = false; } } return isPrime; }
//*********************************************************************** // Probabilistic prime test based on Solovay-Strassen (Euler Criterion) // // p is probably prime if for any a < p (a is not multiple of p), // a^((p-1)/2) mod p = J(a, p) // // where J is the Jacobi symbol. // // Otherwise, p is composite. // // Returns // ------- // True if "this" is a Euler pseudoprime to randomly chosen // bases. The number of chosen bases is given by the "confidence" // parameter. // // False if "this" is definitely NOT prime. // //*********************************************************************** public bool SolovayStrassenTest(int confidence) { BigInteger thisVal; if((this.data[maxLength-1] & 0x80000000) != 0) // negative thisVal = -this; else thisVal = this; if(thisVal.dataLength == 1) { // test small numbers if(thisVal.data[0] == 0 || thisVal.data[0] == 1) return false; else if(thisVal.data[0] == 2 || thisVal.data[0] == 3) return true; } if((thisVal.data[0] & 0x1) == 0) // even numbers return false; int bits = thisVal.bitCount(); BigInteger a = new BigInteger(); BigInteger p_sub1 = thisVal - 1; BigInteger p_sub1_shift = p_sub1 >> 1; Random rand = new Random(); for(int round = 0; round < confidence; round++) { bool done = false; while(!done) // generate a < n { int testBits = 0; // make sure "a" has at least 2 bits while(testBits < 2) testBits = (int)(rand.NextDouble() * bits); a.genRandomBits(testBits, rand); int byteLen = a.dataLength; // make sure "a" is not 0 if(byteLen > 1 || (byteLen == 1 && a.data[0] != 1)) done = true; } // check whether a factor exists (fix for version 1.03) BigInteger gcdTest = a.gcd(thisVal); if(gcdTest.dataLength == 1 && gcdTest.data[0] != 1) return false; // calculate a^((p-1)/2) mod p BigInteger expResult = a.modPow(p_sub1_shift, thisVal); if(expResult == p_sub1) expResult = -1; // calculate Jacobi symbol BigInteger jacob = Jacobi(a, thisVal); //Console.WriteLine("a = " + a.ToString(10) + " b = " + thisVal.ToString(10)); //Console.WriteLine("expResult = " + expResult.ToString(10) + " Jacob = " + jacob.ToString(10)); // if they are different then it is not prime if(expResult != jacob) return false; } return true; }
//*********************************************************************** // Probabilistic prime test based on Rabin-Miller's // // for any p > 0 with p - 1 = 2^s * t // // p is probably prime (strong pseudoprime) if for any a < p, // 1) a^t mod p = 1 or // 2) a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1 // // Otherwise, p is composite. // // Returns // ------- // True if "this" is a strong pseudoprime to randomly chosen // bases. The number of chosen bases is given by the "confidence" // parameter. // // False if "this" is definitely NOT prime. // //*********************************************************************** public bool RabinMillerTest(int confidence) { BigInteger thisVal; if((this.data[maxLength-1] & 0x80000000) != 0) // negative thisVal = -this; else thisVal = this; if(thisVal.dataLength == 1) { // test small numbers if(thisVal.data[0] == 0 || thisVal.data[0] == 1) return false; else if(thisVal.data[0] == 2 || thisVal.data[0] == 3) return true; } if((thisVal.data[0] & 0x1) == 0) // even numbers return false; // calculate values of s and t BigInteger p_sub1 = thisVal - (new BigInteger(1)); int s = 0; for(int index = 0; index < p_sub1.dataLength; index++) { uint mask = 0x01; for(int i = 0; i < 32; i++) { if((p_sub1.data[index] & mask) != 0) { index = p_sub1.dataLength; // to break the outer loop break; } mask <<= 1; s++; } } BigInteger t = p_sub1 >> s; int bits = thisVal.bitCount(); BigInteger a = new BigInteger(); Random rand = new Random(); for(int round = 0; round < confidence; round++) { bool done = false; while(!done) // generate a < n { int testBits = 0; // make sure "a" has at least 2 bits while(testBits < 2) testBits = (int)(rand.NextDouble() * bits); a.genRandomBits(testBits, rand); int byteLen = a.dataLength; // make sure "a" is not 0 if(byteLen > 1 || (byteLen == 1 && a.data[0] != 1)) done = true; } // check whether a factor exists (fix for version 1.03) BigInteger gcdTest = a.gcd(thisVal); if(gcdTest.dataLength == 1 && gcdTest.data[0] != 1) return false; BigInteger b = a.modPow(t, thisVal); /* Console.WriteLine("a = " + a.ToString(10)); Console.WriteLine("b = " + b.ToString(10)); Console.WriteLine("t = " + t.ToString(10)); Console.WriteLine("s = " + s); */ bool result = false; if(b.dataLength == 1 && b.data[0] == 1) // a^t mod p = 1 result = true; for(int j = 0; result == false && j < s; j++) { if(b == p_sub1) // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1 { result = true; break; } b = (b * b) % thisVal; } if(result == false) return false; } return true; }
//*********************************************************************** // Probabilistic prime test based on Fermat's little theorem // // for any a < p (p does not divide a) if // a^(p-1) mod p != 1 then p is not prime. // // Otherwise, p is probably prime (pseudoprime to the chosen base). // // Returns // ------- // True if "this" is a pseudoprime to randomly chosen // bases. The number of chosen bases is given by the "confidence" // parameter. // // False if "this" is definitely NOT prime. // // Note - this method is fast but fails for Carmichael numbers except // when the randomly chosen base is a factor of the number. // //*********************************************************************** public bool FermatLittleTest(int confidence) { BigInteger thisVal; if((this.data[maxLength-1] & 0x80000000) != 0) // negative thisVal = -this; else thisVal = this; if(thisVal.dataLength == 1) { // test small numbers if(thisVal.data[0] == 0 || thisVal.data[0] == 1) return false; else if(thisVal.data[0] == 2 || thisVal.data[0] == 3) return true; } if((thisVal.data[0] & 0x1) == 0) // even numbers return false; int bits = thisVal.bitCount(); BigInteger a = new BigInteger(); BigInteger p_sub1 = thisVal - (new BigInteger(1)); Random rand = new Random(); for(int round = 0; round < confidence; round++) { bool done = false; while(!done) // generate a < n { int testBits = 0; // make sure "a" has at least 2 bits while(testBits < 2) testBits = (int)(rand.NextDouble() * bits); a.genRandomBits(testBits, rand); int byteLen = a.dataLength; // make sure "a" is not 0 if(byteLen > 1 || (byteLen == 1 && a.data[0] != 1)) done = true; } // check whether a factor exists (fix for version 1.03) BigInteger gcdTest = a.gcd(thisVal); if(gcdTest.dataLength == 1 && gcdTest.data[0] != 1) return false; // calculate a^(p-1) mod p BigInteger expResult = a.modPow(p_sub1, thisVal); int resultLen = expResult.dataLength; // is NOT prime is a^(p-1) mod p != 1 if(resultLen > 1 || (resultLen == 1 && expResult.data[0] != 1)) { //Console.WriteLine("a = " + a.ToString()); return false; } } return true; }
//*********************************************************************** // Returns gcd(this, bi) //*********************************************************************** public BigInteger gcd(BigInteger bi) { BigInteger x; BigInteger y; if((data[maxLength-1] & 0x80000000) != 0) // negative x = -this; else x = this; if((bi.data[maxLength-1] & 0x80000000) != 0) // negative y = -bi; else y = bi; BigInteger g = y; while(x.dataLength > 1 || (x.dataLength == 1 && x.data[0] != 0)) { g = x; x = y % x; y = g; } return g; }
//*********************************************************************** // Fast calculation of modular reduction using Barrett's reduction. // Requires x < b^(2k), where b is the base. In this case, base is // 2^32 (uint). // // Reference [4] //*********************************************************************** private BigInteger BarrettReduction(BigInteger x, BigInteger n, BigInteger constant) { int k = n.dataLength, kPlusOne = k+1, kMinusOne = k-1; BigInteger q1 = new BigInteger(); // q1 = x / b^(k-1) for(int i = kMinusOne, j = 0; i < x.dataLength; i++, j++) q1.data[j] = x.data[i]; q1.dataLength = x.dataLength - kMinusOne; if(q1.dataLength <= 0) q1.dataLength = 1; BigInteger q2 = q1 * constant; BigInteger q3 = new BigInteger(); // q3 = q2 / b^(k+1) for(int i = kPlusOne, j = 0; i < q2.dataLength; i++, j++) q3.data[j] = q2.data[i]; q3.dataLength = q2.dataLength - kPlusOne; if(q3.dataLength <= 0) q3.dataLength = 1; // r1 = x mod b^(k+1) // i.e. keep the lowest (k+1) words BigInteger r1 = new BigInteger(); int lengthToCopy = (x.dataLength > kPlusOne) ? kPlusOne : x.dataLength; for(int i = 0; i < lengthToCopy; i++) r1.data[i] = x.data[i]; r1.dataLength = lengthToCopy; // r2 = (q3 * n) mod b^(k+1) // partial multiplication of q3 and n BigInteger r2 = new BigInteger(); for(int i = 0; i < q3.dataLength; i++) { if(q3.data[i] == 0) continue; ulong mcarry = 0; int t = i; for(int j = 0; j < n.dataLength && t < kPlusOne; j++, t++) { // t = i + j ulong val = ((ulong)q3.data[i] * (ulong)n.data[j]) + (ulong)r2.data[t] + mcarry; r2.data[t] = (uint)(val & 0xFFFFFFFF); mcarry = (val >> 32); } if(t < kPlusOne) r2.data[t] = (uint)mcarry; } r2.dataLength = kPlusOne; while(r2.dataLength > 1 && r2.data[r2.dataLength-1] == 0) r2.dataLength--; r1 -= r2; if((r1.data[maxLength-1] & 0x80000000) != 0) // negative { BigInteger val = new BigInteger(); val.data[kPlusOne] = 0x00000001; val.dataLength = kPlusOne + 1; r1 += val; } while(r1 >= n) r1 -= n; return r1; }
//*********************************************************************** // Modulo Exponentiation //*********************************************************************** public BigInteger modPow(BigInteger exp, BigInteger n) { if((exp.data[maxLength-1] & 0x80000000) != 0) throw (new ArithmeticException("Positive exponents only.")); BigInteger resultNum = 1; BigInteger tempNum; bool thisNegative = false; if((this.data[maxLength-1] & 0x80000000) != 0) // negative this { tempNum = -this % n; thisNegative = true; } else tempNum = this % n; // ensures (tempNum * tempNum) < b^(2k) if((n.data[maxLength-1] & 0x80000000) != 0) // negative n n = -n; // calculate constant = b^(2k) / m BigInteger constant = new BigInteger(); int i = n.dataLength << 1; constant.data[i] = 0x00000001; constant.dataLength = i + 1; constant = constant / n; int totalBits = exp.bitCount(); int count = 0; // perform squaring and multiply exponentiation for(int pos = 0; pos < exp.dataLength; pos++) { uint mask = 0x01; //Console.WriteLine("pos = " + pos); for(int index = 0; index < 32; index++) { if((exp.data[pos] & mask) != 0) resultNum = BarrettReduction(resultNum * tempNum, n, constant); mask <<= 1; tempNum = BarrettReduction(tempNum * tempNum, n, constant); if(tempNum.dataLength == 1 && tempNum.data[0] == 1) { if(thisNegative && (exp.data[0] & 0x1) != 0) //odd exp return -resultNum; return resultNum; } count++; if(count == totalBits) break; } } if(thisNegative && (exp.data[0] & 0x1) != 0) //odd exp return -resultNum; return resultNum; }
//*********************************************************************** // Performs the calculation of the kth term in the Lucas Sequence. // For details of the algorithm, see reference [9]. // // k must be odd. i.e LSB == 1 //*********************************************************************** private static BigInteger[] LucasSequenceHelper(BigInteger P, BigInteger Q, BigInteger k, BigInteger n, BigInteger constant, int s) { BigInteger[] result = new BigInteger[3]; if((k.data[0] & 0x00000001) == 0) throw (new ArgumentException("Argument k must be odd.")); int numbits = k.bitCount(); uint mask = (uint)0x1 << ((numbits & 0x1F) - 1); // v = v0, v1 = v1, u1 = u1, Q_k = Q^0 BigInteger v = 2 % n, Q_k = 1 % n, v1 = P % n, u1 = Q_k; bool flag = true; for(int i = k.dataLength - 1; i >= 0 ; i--) // iterate on the binary expansion of k { //Console.WriteLine("round"); while(mask != 0) { if(i == 0 && mask == 0x00000001) // last bit break; if((k.data[i] & mask) != 0) // bit is set { // index doubling with addition u1 = (u1 * v1) % n; v = ((v * v1) - (P * Q_k)) % n; v1 = n.BarrettReduction(v1 * v1, n, constant); v1 = (v1 - ((Q_k * Q) << 1)) % n; if(flag) flag = false; else Q_k = n.BarrettReduction(Q_k * Q_k, n, constant); Q_k = (Q_k * Q) % n; } else { // index doubling u1 = ((u1 * v) - Q_k) % n; v1 = ((v * v1) - (P * Q_k)) % n; v = n.BarrettReduction(v * v, n, constant); v = (v - (Q_k << 1)) % n; if(flag) { Q_k = Q % n; flag = false; } else Q_k = n.BarrettReduction(Q_k * Q_k, n, constant); } mask >>= 1; } mask = 0x80000000; } // at this point u1 = u(n+1) and v = v(n) // since the last bit always 1, we need to transform u1 to u(2n+1) and v to v(2n+1) u1 = ((u1 * v) - Q_k) % n; v = ((v * v1) - (P * Q_k)) % n; if(flag) flag = false; else Q_k = n.BarrettReduction(Q_k * Q_k, n, constant); Q_k = (Q_k * Q) % n; for(int i = 0; i < s; i++) { // index doubling u1 = (u1 * v) % n; v = ((v * v) - (Q_k << 1)) % n; if(flag) { Q_k = Q % n; flag = false; } else Q_k = n.BarrettReduction(Q_k * Q_k, n, constant); } result[0] = u1; result[1] = v; result[2] = Q_k; return result; }
//*********************************************************************** // Constructor (Default value provided by a string of digits of the // specified base) // // Example (base 10) // ----------------- // To initialize "a" with the default value of 1234 in base 10 // BigInteger a = new BigInteger("1234", 10) // // To initialize "a" with the default value of -1234 // BigInteger a = new BigInteger("-1234", 10) // // Example (base 16) // ----------------- // To initialize "a" with the default value of 0x1D4F in base 16 // BigInteger a = new BigInteger("1D4F", 16) // // To initialize "a" with the default value of -0x1D4F // BigInteger a = new BigInteger("-1D4F", 16) // // Note that string values are specified in the <sign><magnitude> // format. // //*********************************************************************** public BigInteger(string value, int radix) { BigInteger multiplier = new BigInteger(1); BigInteger result = new BigInteger(); value = (value.ToUpper()).Trim(); int limit = 0; if(value[0] == '-') limit = 1; for(int i = value.Length - 1; i >= limit ; i--) { int posVal = (int)value[i]; if(posVal >= '0' && posVal <= '9') posVal -= '0'; else if(posVal >= 'A' && posVal <= 'Z') posVal = (posVal - 'A') + 10; else posVal = 9999999; // arbitrary large if(posVal >= radix) throw(new ArithmeticException("Invalid string in constructor.")); else { if(value[0] == '-') posVal = -posVal; result = result + (multiplier * posVal); if((i - 1) >= limit) multiplier = multiplier * radix; } } if(value[0] == '-') // negative values { if((result.data[maxLength-1] & 0x80000000) == 0) throw(new ArithmeticException("Negative underflow in constructor.")); } else // positive values { if((result.data[maxLength-1] & 0x80000000) != 0) throw(new ArithmeticException("Positive overflow in constructor.")); } data = new uint[maxLength]; for(int i = 0; i < result.dataLength; i++) data[i] = result.data[i]; dataLength = result.dataLength; }
//*********************************************************************** // Computes the Jacobi Symbol for a and b. // Algorithm adapted from [3] and [4] with some optimizations //*********************************************************************** public static int Jacobi(BigInteger a, BigInteger b) { // Jacobi defined only for odd integers if((b.data[0] & 0x1) == 0) throw (new ArgumentException("Jacobi defined only for odd integers.")); if(a >= b) a %= b; if(a.dataLength == 1 && a.data[0] == 0) return 0; // a == 0 if(a.dataLength == 1 && a.data[0] == 1) return 1; // a == 1 if(a < 0) { if( (((b-1).data[0]) & 0x2) == 0) //if( (((b-1) >> 1).data[0] & 0x1) == 0) return Jacobi(-a, b); else return -Jacobi(-a, b); } int e = 0; for(int index = 0; index < a.dataLength; index++) { uint mask = 0x01; for(int i = 0; i < 32; i++) { if((a.data[index] & mask) != 0) { index = a.dataLength; // to break the outer loop break; } mask <<= 1; e++; } } BigInteger a1 = a >> e; int s = 1; if((e & 0x1) != 0 && ((b.data[0] & 0x7) == 3 || (b.data[0] & 0x7) == 5)) s = -1; if((b.data[0] & 0x3) == 3 && (a1.data[0] & 0x3) == 3) s = -s; if(a1.dataLength == 1 && a1.data[0] == 1) return s; else return (s * Jacobi(b % a1, a1)); }
//*********************************************************************** // Overloading of the unary ++ operator //*********************************************************************** public static BigInteger operator ++(BigInteger bi1) { BigInteger result = new BigInteger(bi1); long val, carry = 1; int index = 0; while(carry != 0 && index < maxLength) { val = (long)(result.data[index]); val++; result.data[index] = (uint)(val & 0xFFFFFFFF); carry = val >> 32; index++; } if(index > result.dataLength) result.dataLength = index; else { while(result.dataLength > 1 && result.data[result.dataLength-1] == 0) result.dataLength--; } // overflow check int lastPos = maxLength - 1; // overflow if initial value was +ve but ++ caused a sign // change to negative. if((bi1.data[lastPos] & 0x80000000) == 0 && (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000)) { throw (new ArithmeticException("Overflow in ++.")); } return result; }
//*********************************************************************** // Constructor (Default value provided by BigInteger) //*********************************************************************** public BigInteger(BigInteger bi) { data = new uint[maxLength]; dataLength = bi.dataLength; for(int i = 0; i < dataLength; i++) data[i] = bi.data[i]; }
//*********************************************************************** // Overloading of the unary -- operator //*********************************************************************** public static BigInteger operator --(BigInteger bi1) { BigInteger result = new BigInteger(bi1); long val; bool carryIn = true; int index = 0; while(carryIn && index < maxLength) { val = (long)(result.data[index]); val--; result.data[index] = (uint)(val & 0xFFFFFFFF); if(val >= 0) carryIn = false; index++; } if(index > result.dataLength) result.dataLength = index; while(result.dataLength > 1 && result.data[result.dataLength-1] == 0) result.dataLength--; // overflow check int lastPos = maxLength - 1; // overflow if initial value was -ve but -- caused a sign // change to positive. if((bi1.data[lastPos] & 0x80000000) != 0 && (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000)) { throw (new ArithmeticException("Underflow in --.")); } return result; }
//*********************************************************************** // Generates a positive BigInteger that is probably prime. //*********************************************************************** public static BigInteger genPseudoPrime(int bits, int confidence, Random rand) { BigInteger result = new BigInteger(); bool done = false; while(!done) { result.genRandomBits(bits, rand); result.data[0] |= 0x01; // make it odd // prime test done = result.isProbablePrime(confidence); } return result; }
//*********************************************************************** // Overloading of unary << operators //*********************************************************************** public static BigInteger operator <<(BigInteger bi1, int shiftVal) { BigInteger result = new BigInteger(bi1); result.dataLength = shiftLeft(result.data, shiftVal); return result; }
//*********************************************************************** // Generates a random number with the specified number of bits such // that gcd(number, this) = 1 //*********************************************************************** public BigInteger genCoPrime(int bits, Random rand) { bool done = false; BigInteger result = new BigInteger(); while(!done) { result.genRandomBits(bits, rand); //Console.WriteLine(result.ToString(16)); // gcd test BigInteger g = result.gcd(this); if(g.dataLength == 1 && g.data[0] == 1) done = true; } return result; }
//*********************************************************************** // Overloading of the NOT operator (1's complement) //*********************************************************************** public static BigInteger operator ~(BigInteger bi1) { BigInteger result = new BigInteger(bi1); for(int i = 0; i < maxLength; i++) result.data[i] = (uint)(~(bi1.data[i])); result.dataLength = maxLength; while(result.dataLength > 1 && result.data[result.dataLength-1] == 0) result.dataLength--; return result; }
//*********************************************************************** // Returns the modulo inverse of this. Throws ArithmeticException if // the inverse does not exist. (i.e. gcd(this, modulus) != 1) //*********************************************************************** public BigInteger modInverse(BigInteger modulus) { BigInteger[] p = { 0, 1 }; BigInteger[] q = new BigInteger[2]; // quotients BigInteger[] r = { 0, 0 }; // remainders int step = 0; BigInteger a = modulus; BigInteger b = this; while(b.dataLength > 1 || (b.dataLength == 1 && b.data[0] != 0)) { BigInteger quotient = new BigInteger(); BigInteger remainder = new BigInteger(); if(step > 1) { BigInteger pval = (p[0] - (p[1] * q[0])) % modulus; p[0] = p[1]; p[1] = pval; } if(b.dataLength == 1) singleByteDivide(a, b, quotient, remainder); else multiByteDivide(a, b, quotient, remainder); /* Console.WriteLine(quotient.dataLength); Console.WriteLine("{0} = {1}({2}) + {3} p = {4}", a.ToString(10), b.ToString(10), quotient.ToString(10), remainder.ToString(10), p[1].ToString(10)); */ q[0] = q[1]; r[0] = r[1]; q[1] = quotient; r[1] = remainder; a = b; b = remainder; step++; } if(r[0].dataLength > 1 || (r[0].dataLength == 1 && r[0].data[0] != 1)) throw (new ArithmeticException("No inverse!")); BigInteger result = ((p[0] - (p[1] * q[0])) % modulus); if((result.data[maxLength - 1] & 0x80000000) != 0) result += modulus; // get the least positive modulus return result; }
//*********************************************************************** // Returns a value that is equivalent to the integer square root // of the BigInteger. // // The integer square root of "this" is defined as the largest integer n // such that (n * n) <= this // //*********************************************************************** public BigInteger sqrt() { uint numBits = (uint)this.bitCount(); if((numBits & 0x1) != 0) // odd number of bits numBits = (numBits >> 1) + 1; else numBits = (numBits >> 1); uint bytePos = numBits >> 5; byte bitPos = (byte)(numBits & 0x1F); uint mask; BigInteger result = new BigInteger(); if(bitPos == 0) mask = 0x80000000; else { mask = (uint)1 << bitPos; bytePos++; } result.dataLength = (int)bytePos; for(int i = (int)bytePos - 1; i >= 0; i--) { while(mask != 0) { // guess result.data[i] ^= mask; // undo the guess if its square is larger than this if((result * result) > this) result.data[i] ^= mask; mask >>= 1; } mask = 0x80000000; } return result; }
//*********************************************************************** // Returns the k_th number in the Lucas Sequence reduced modulo n. // // Uses index doubling to speed up the process. For example, to calculate V(k), // we maintain two numbers in the sequence V(n) and V(n+1). // // To obtain V(2n), we use the identity // V(2n) = (V(n) * V(n)) - (2 * Q^n) // To obtain V(2n+1), we first write it as // V(2n+1) = V((n+1) + n) // and use the identity // V(m+n) = V(m) * V(n) - Q * V(m-n) // Hence, // V((n+1) + n) = V(n+1) * V(n) - Q^n * V((n+1) - n) // = V(n+1) * V(n) - Q^n * V(1) // = V(n+1) * V(n) - Q^n * P // // We use k in its binary expansion and perform index doubling for each // bit position. For each bit position that is set, we perform an // index doubling followed by an index addition. This means that for V(n), // we need to update it to V(2n+1). For V(n+1), we need to update it to // V((2n+1)+1) = V(2*(n+1)) // // This function returns // [0] = U(k) // [1] = V(k) // [2] = Q^n // // Where U(0) = 0 % n, U(1) = 1 % n // V(0) = 2 % n, V(1) = P % n //*********************************************************************** public static BigInteger[] LucasSequence(BigInteger P, BigInteger Q, BigInteger k, BigInteger n) { if(k.dataLength == 1 && k.data[0] == 0) { BigInteger[] result = new BigInteger[3]; result[0] = 0; result[1] = 2 % n; result[2] = 1 % n; return result; } // calculate constant = b^(2k) / m // for Barrett Reduction BigInteger constant = new BigInteger(); int nLen = n.dataLength << 1; constant.data[nLen] = 0x00000001; constant.dataLength = nLen + 1; constant = constant / n; // calculate values of s and t int s = 0; for(int index = 0; index < k.dataLength; index++) { uint mask = 0x01; for(int i = 0; i < 32; i++) { if((k.data[index] & mask) != 0) { index = k.dataLength; // to break the outer loop break; } mask <<= 1; s++; } } BigInteger t = k >> s; //Console.WriteLine("s = " + s + " t = " + t); return LucasSequenceHelper(P, Q, t, n, constant, s); }
/** * * <param name="y"/> * <param name="params"/> */ public PublicKey(BigInteger y, Parameter parameter) : base(false, parameter) { this.y = y; }
//*********************************************************************** // Returns min(this, bi) //*********************************************************************** public BigInteger min(BigInteger bi) { if(this < bi) return (new BigInteger(this)); else return (new BigInteger(bi)); }