static void Main(string[] args) { Random rand = new Random(); int sampSize = 30; double[,] results = new double[5, sampSize]; /* * for (int i = 0; i < sampSize; i++) * { * results[0,i] = RandomSearch.Run(1000, rand); * results[1,i] = HillClimbing.Run(1000, rand); * results[2,i] = TabooSearch.Run(1000, rand, 4); * GA ga = new GA(20, 10, 0.05, rand); * results[3,i] = ga.Run(50); * SimulatedAnnealing sa = new SimulatedAnnealing(-1, 2, 6, rand); * results[4,i] = sa.Run(1000, 20, rand); * } * * try * { * * FileStream fileStream = File.Open("meta_results.txt", FileMode.Create, FileAccess.Write); * StreamWriter fileWriter = new StreamWriter(fileStream); * fileWriter.WriteLine("randSearch;hillClimb;taboo;ga;sa;"); * * for (int i = 0; i < sampSize; i++) * { * for (int j = 0; j < 5; j++) * { * fileWriter.Write(results[j,i]+";"); * } * fileWriter.WriteLine(""); * } * * fileWriter.Flush(); * fileWriter.Close(); * } * catch (IOException ioe) * { * Console.WriteLine(ioe); * } */ //TSP Problem_TSP problem = new Problem_TSP(); problem.ReadProblem("TSP30.txt"); GA_TSP ga_tsp; for (int i = 0; i < sampSize; i++) { ga_tsp = new GA_TSP(50, 0.1, 0.8, rand); results[0, i] = ga_tsp.Run(50); ga_tsp = new GA_TSP(50, 0.3, 0.8, rand); results[1, i] = ga_tsp.Run(50); ga_tsp = new GA_TSP(50, 0.1, 0.5, rand); results[2, i] = ga_tsp.Run(50); ga_tsp = new GA_TSP(25, 0.1, 0.8, rand); results[3, i] = ga_tsp.Run(100); ga_tsp = new GA_TSP(100, 0.1, 0.8, rand); results[4, i] = ga_tsp.Run(25); } try { FileStream fileStream = File.Open("TSP_results.txt", FileMode.Create, FileAccess.Write); StreamWriter fileWriter = new StreamWriter(fileStream); fileWriter.WriteLine("basic;highMutProb;lowCrossProb;moreIter;bigPop;"); for (int i = 0; i < sampSize; i++) { for (int j = 0; j < 5; j++) { fileWriter.Write(results[j, i] + ";"); } fileWriter.WriteLine(""); } fileWriter.Flush(); fileWriter.Close(); } catch (IOException ioe) { Console.WriteLine(ioe); } }
public void Evaluate() { this.fitness = Problem_TSP.Function(solution); }