public override bool Intersect(Ray r, out double tHit, out double rayEpsilon, out DifferentialGeometry dg) { tHit = Double.NaN; rayEpsilon = Double.NaN; dg = null; // Transform _Ray_ to object space Ray ray = WorldToObject.Apply(r); // Compute plane intersection for disk if (Math.Abs(ray.d.z) < 1e-7) return false; double thit = (height - ray.o.z) / ray.d.z; if (thit < ray.mint || thit > ray.maxt) return false; // See if hit point is inside disk radii and $\phimax$ Point phit = ray.GetPointAt(thit); double dist2 = phit.x * phit.x + phit.y * phit.y; if (dist2 > radius * radius || dist2 < innerRadius * innerRadius) return false; // Test disk $\phi$ value against $\phimax$ double phi = Math.Atan2(phit.y, phit.x); if (phi < 0) phi += 2.0d * Math.PI; if (phi > phiMax) return false; // Find parametric representation of disk hit double u = phi / phiMax; double oneMinusV = ((Math.Sqrt(dist2) - innerRadius) / (radius - innerRadius)); double invOneMinusV = (oneMinusV > 0.0d) ? (1.0d / oneMinusV) : 0.0d; double v = 1.0d - oneMinusV; Vector dpdu = new Vector(-phiMax * phit.y, phiMax * phit.x, 0.0d); Vector dpdv = new Vector(-phit.x * invOneMinusV, -phit.y * invOneMinusV, 0.0d); dpdu *= phiMax * Constants.INV_TWOPI; dpdv *= (radius - innerRadius) / radius; Normal dndu = new Normal(0, 0, 0); Normal dndv = new Normal(0, 0, 0); // Initialize _DifferentialGeometry_ from parametric information Transform o2w = ObjectToWorld; dg = new DifferentialGeometry(o2w.Apply(phit), o2w.Apply(dpdu), o2w.Apply(dpdv), o2w.Apply(dndu), o2w.Apply(dndv), u, v, this); // Update _tHit_ for quadric intersection tHit = thit; // Compute _rayEpsilon_ for quadric intersection rayEpsilon = 5e-4d * tHit; return true; }
public BSSRDF GetBSSRDF(DifferentialGeometry dg, DifferentialGeometry dgs) { throw new NotImplementedException(); }
public override bool Intersect(Ray r, out double tHit, out double rayEpsilon, out DifferentialGeometry dg) { double phi; Point phit; tHit = Double.NaN; rayEpsilon = Double.NaN; dg = null; // Transform _Ray_ to object space Ray ray = WorldToObject.Apply(r); // Compute quadratic paraboloid coefficients double k = zmax / (radius * radius); double A = k * (ray.d.x * ray.d.x + ray.d.y * ray.d.y); double B = 2 * k * (ray.d.x * ray.o.x + ray.d.y * ray.o.y) - ray.d.z; double C = k * (ray.o.x * ray.o.x + ray.o.y * ray.o.y) - ray.o.z; // Solve quadratic equation for _t_ values double t0, t1; if (!Utility.Quadratic(A, B, C, out t0, out t1)) return false; // Compute intersection distance along ray if (t0 > ray.maxt || t1 < ray.mint) return false; double thit = t0; if (t0 < ray.mint) { thit = t1; if (thit > ray.maxt) return false; } // Compute paraboloid inverse mapping phit = ray.GetPointAt(thit); phi = Math.Atan2(phit.y, phit.x); if (phi < 0.0d) phi += 2.0d * Math.PI; // Test paraboloid intersection against clipping parameters if (phit.z < zmin || phit.z > zmax || phi > phiMax) { if (thit == t1) return false; thit = t1; if (t1 > ray.maxt) return false; // Compute paraboloid inverse mapping phit = ray.GetPointAt(thit); phi = Math.Atan2(phit.y, phit.x); if (phi < 0.0d) phi += 2.0d * Math.PI; if (phit.z < zmin || phit.z > zmax || phi > phiMax) return false; } // Find parametric representation of paraboloid hit double u = phi / phiMax; double v = (phit.z - zmin) / (zmax - zmin); // Compute parabaloid $\dpdu$ and $\dpdv$ Vector dpdu = new Vector(-phiMax * phit.y, phiMax * phit.x, 0.0d); Vector dpdv = (zmax - zmin) * new Vector(phit.x / (2.0d * phit.z), phit.y / (2.0d * phit.z), 1.0d); // Compute parabaloid $\dndu$ and $\dndv$ Vector d2Pduu = -phiMax * phiMax * new Vector(phit.x, phit.y, 0); Vector d2Pduv = (zmax - zmin) * phiMax * new Vector(-phit.y / (2.0d * phit.z), phit.x / (2.0d * phit.z), 0); Vector d2Pdvv = -(zmax - zmin) * (zmax - zmin) * new Vector(phit.x / (4.0d * phit.z * phit.z), phit.y / (4.0d * phit.z * phit.z), 0.0d); // Compute coefficients for fundamental forms double E = Geometry.Dot(dpdu, dpdu); double F = Geometry.Dot(dpdu, dpdv); double G = Geometry.Dot(dpdv, dpdv); Vector N = Geometry.Normalize(Geometry.Cross(dpdu, dpdv)); double e = Geometry.Dot(N, d2Pduu); double f = Geometry.Dot(N, d2Pduv); double g = Geometry.Dot(N, d2Pdvv); // Compute $\dndu$ and $\dndv$ from fundamental form coefficients double invEGF2 = 1.0d / (E * G - F * F); Normal dndu = new Normal((f * F - e * G) * invEGF2 * dpdu + (e * F - f * E) * invEGF2 * dpdv); Normal dndv = new Normal((g * F - f * G) * invEGF2 * dpdu + (f * F - g * E) * invEGF2 * dpdv); // Initialize _DifferentialGeometry_ from parametric information Transform o2w = ObjectToWorld; dg = new DifferentialGeometry(o2w.Apply(phit), o2w.Apply(dpdu), o2w.Apply(dpdv), o2w.Apply(dndu), o2w.Apply(dndv), u, v, this); // Update _tHit_ for quadric intersection tHit = thit; // Compute _rayEpsilon_ for quadric intersection rayEpsilon = 5e-4d * tHit; return true; }
public override BSSRDF GetBSSRDF(DifferentialGeometry dg, Transform ObjectToWorld) { throw new NotImplementedException(); }
public override void GetShadingGeometry(Transform obj2world, DifferentialGeometry dg, out DifferentialGeometry dgShading) { if (mesh.n == null && mesh.s == null) { dgShading = dg; return; } // Initialize _Triangle_ shading geometry with _n_ and _s_ // Compute barycentric coordinates for point double[] b = new double[3]; // Initialize _A_ and _C_ matrices for barycentrics double[,] uv = new double[3, 2]; GetUVs(uv); double[,] A = { { uv[1,0] - uv[0,0], uv[2,0] - uv[0,0] }, { uv[1,1] - uv[0,1], uv[2,1] - uv[0,1] } }; double[] C = { dg.u - uv[0, 0], dg.v - uv[0, 1] }; if (!Utility.SolveLinearSystem2x2(A, C, out b[1], out b[2])) { // Handle degenerate parametric mapping b[0] = b[1] = b[2] = 1.0f / 3.0f; } else b[0] = 1.0d - b[1] - b[2]; // Use _n_ and _s_ to compute shading tangents for triangle, _ss_ and _ts_ Normal ns; Vector ss, ts; if (mesh.n != null) ns = Geometry.Normalize(obj2world.Apply(b[0] * mesh.n[v[0]] + b[1] * mesh.n[v[1]] + b[2] * mesh.n[v[2]])); else ns = dg.nn; if (mesh.s != null) ss = Geometry.Normalize(obj2world.Apply(b[0] * mesh.s[v[0]] + b[1] * mesh.s[v[1]] + b[2] * mesh.s[v[2]])); else ss = Geometry.Normalize(dg.dpdu); ts = Geometry.Cross(ss, ns); if (ts.LengthSquared() > 0.0d) { ts = Geometry.Normalize(ts); ss = Geometry.Cross(ts, ns); } else Geometry.CoordinateSystem(new Vector(ns), out ss, out ts); Normal dndu, dndv; // Compute $\dndu$ and $\dndv$ for triangle shading geometry if (mesh.n != null) { double[,] uvs = new double[3, 2]; GetUVs(uvs); // Compute deltas for triangle partial derivatives of normal double du1 = uvs[0, 0] - uvs[2, 0]; double du2 = uvs[1, 0] - uvs[2, 0]; double dv1 = uvs[0, 1] - uvs[2, 1]; double dv2 = uvs[1, 1] - uvs[2, 1]; Normal dn1 = mesh.n[v[0]] - mesh.n[v[2]]; Normal dn2 = mesh.n[v[1]] - mesh.n[v[2]]; double determinant = du1 * dv2 - dv1 * du2; if (determinant == 0.0d) dndu = dndv = new Normal(0, 0, 0); else { double invdet = 1.0d / determinant; dndu = (dv2 * dn1 - dv1 * dn2) * invdet; dndv = (-du2 * dn1 + du1 * dn2) * invdet; } } else dndu = dndv = new Normal(0, 0, 0); dgShading = new DifferentialGeometry(dg.p, ss, ts, ObjectToWorld.Apply(dndu), ObjectToWorld.Apply(dndv), dg.u, dg.v, dg.shape); dgShading.dudx = dg.dudx; dgShading.dvdx = dg.dvdx; dgShading.dudy = dg.dudy; dgShading.dvdy = dg.dvdy; dgShading.dpdx = dg.dpdx; dgShading.dpdy = dg.dpdy; }
public override bool IntersectP(Ray r) { // Compute $\VEC{s}_1$ // Get triangle vertices in _p1_, _p2_, and _p3_ Point p1 = mesh.p[v[0]]; Point p2 = mesh.p[v[1]]; Point p3 = mesh.p[v[2]]; Vector e1 = p2 - p1; Vector e2 = p3 - p1; Vector s1 = Geometry.Cross(r.d, e2); double divisor = Geometry.Dot(s1, e1); if (divisor == 0.0d) return false; double invDivisor = 1.0d / divisor; // Compute first barycentric coordinate Vector d = r.o - p1; double b1 = Geometry.Dot(d, s1) * invDivisor; if (b1 < 0.0d || b1 > 1.0d) return false; // Compute second barycentric coordinate Vector s2 = Geometry.Cross(d, e1); double b2 = Geometry.Dot(r.d, s2) * invDivisor; if (b2 < 0.0d || b1 + b2 > 1.0d) return false; // Compute _t_ to intersection point double t = Geometry.Dot(e2, s2) * invDivisor; if (t < r.mint || t > r.maxt) return false; // Test shadow r intersection against alpha texture, if present if (r.depth != -1 && mesh.alphaTexture != null) { // Compute triangle partial derivatives Vector dpdu, dpdv; double[,] uvs = new double[3, 2]; GetUVs(uvs); // Compute deltas for triangle partial derivatives double du1 = uvs[0, 0] - uvs[2, 0]; double du2 = uvs[1, 0] - uvs[2, 0]; double dv1 = uvs[0, 1] - uvs[2, 1]; double dv2 = uvs[1, 1] - uvs[2, 1]; Vector dp1 = p1 - p3, dp2 = p2 - p3; double determinant = du1 * dv2 - dv1 * du2; if (determinant == 0.0d) { // Handle zero determinant for triangle partial derivative matrix Geometry.CoordinateSystem(Geometry.Normalize(Geometry.Cross(e2, e1)), out dpdu, out dpdv); } else { double invdet = 1.0d / determinant; dpdu = (dv2 * dp1 - dv1 * dp2) * invdet; dpdv = (-du2 * dp1 + du1 * dp2) * invdet; } // Interpolate $(u,v)$ triangle parametric coordinates double b0 = 1 - b1 - b2; double tu = b0 * uvs[0, 0] + b1 * uvs[1, 0] + b2 * uvs[2, 0]; double tv = b0 * uvs[0, 1] + b1 * uvs[1, 1] + b2 * uvs[2, 1]; DifferentialGeometry dgLocal = new DifferentialGeometry(r.GetPointAt(t), dpdu, dpdv, new Normal(0, 0, 0), new Normal(0, 0, 0), tu, tv, this); if (mesh.alphaTexture.Evaluate(dgLocal) == 0.0d) return false; } return true; }
public abstract BSSRDF GetBSSRDF(DifferentialGeometry dg, Transform ObjectToWorld);
public virtual void GetShadingGeometry(Transform obj2world, DifferentialGeometry dg, out DifferentialGeometry dgShading) { dgShading = dg; }
public abstract bool Intersect(Ray r, out double tHit, out double rayEpsilon, out DifferentialGeometry dg);
public override bool Intersect(Ray r, out double tHit, out double rayEpsilon, out DifferentialGeometry dg) { double phi; Point phit; tHit = Double.NaN; rayEpsilon = Double.NaN; dg = null; // Transform _Ray_ to object space Ray ray = WorldToObject.Apply(r); // Compute quadratic sphere coefficients double A = ray.d.x * ray.d.x + ray.d.y * ray.d.y + ray.d.z * ray.d.z; double B = 2 * (ray.d.x * ray.o.x + ray.d.y * ray.o.y + ray.d.z * ray.o.z); double C = ray.o.x * ray.o.x + ray.o.y * ray.o.y + ray.o.z * ray.o.z - radius * radius; // Solve quadratic equation for _t_ values double t0, t1; if (!Utility.Quadratic(A, B, C, out t0, out t1)) return false; // Compute intersection distance along ray if (t0 > ray.maxt || t1 < ray.mint) return false; double thit = t0; if (t0 < ray.mint) { thit = t1; if (thit > ray.maxt) return false; } // Compute sphere hit position and $\phi$ phit = ray.GetPointAt(thit); if (phit.x == 0.0d && phit.y == 0.0d) phit.x = 1e-5d * radius; phi = Math.Atan2(phit.y, phit.x); if (phi < 0.0d) phi += 2.0d * Math.PI; // Test sphere intersection against clipping parameters if ((zmin > -radius && phit.z < zmin) || (zmax < radius && phit.z > zmax) || phi > phiMax) { if (thit == t1) return false; if (t1 > ray.maxt) return false; thit = t1; // Compute sphere hit position and $\phi$ phit = ray.GetPointAt(thit); if (phit.x == 0.0d && phit.y == 0.0d) phit.x = 1e-5d * radius; phi = Math.Atan2(phit.y, phit.x); if (phi < 0.0d) phi += 2.0d * Math.PI; if ((zmin > -radius && phit.z < zmin) || (zmax < radius && phit.z > zmax) || phi > phiMax) return false; } // Find parametric representation of sphere hit double u = phi / phiMax; double theta = Math.Acos(Utility.Clamp(phit.z / radius, -1.0d, 1.0d)); double v = (theta - thetaMin) / (thetaMax - thetaMin); // Compute sphere $\dpdu$ and $\dpdv$ double zradius = Math.Sqrt(phit.x * phit.x + phit.y * phit.y); double invzradius = 1.0d / zradius; double cosphi = phit.x * invzradius; double sinphi = phit.y * invzradius; Vector dpdu = new Vector(-phiMax * phit.y, phiMax * phit.x, 0); Vector dpdv = (thetaMax - thetaMin) * new Vector(phit.z * cosphi, phit.z * sinphi, -radius * Math.Sin(theta)); // Compute sphere $\dndu$ and $\dndv$ Vector d2Pduu = -phiMax * phiMax * new Vector(phit.x, phit.y, 0); Vector d2Pduv = (thetaMax - thetaMin) * phit.z * phiMax * new Vector(-sinphi, cosphi, 0.0d); Vector d2Pdvv = -(thetaMax - thetaMin) * (thetaMax - thetaMin) * new Vector(phit.x, phit.y, phit.z); // Compute coefficients for fundamental forms double E = Geometry.Dot(dpdu, dpdu); double F = Geometry.Dot(dpdu, dpdv); double G = Geometry.Dot(dpdv, dpdv); Vector N = Geometry.Normalize(Geometry.Cross(dpdu, dpdv)); double e = Geometry.Dot(N, d2Pduu); double f = Geometry.Dot(N, d2Pduv); double g = Geometry.Dot(N, d2Pdvv); // Compute $\dndu$ and $\dndv$ from fundamental form coefficients double invEGF2 = 1.0d / (E * G - F * F); Normal dndu = new Normal((f * F - e * G) * invEGF2 * dpdu + (e * F - f * E) * invEGF2 * dpdv); Normal dndv = new Normal((g * F - f * G) * invEGF2 * dpdu + (f * F - g * E) * invEGF2 * dpdv); // Initialize _DifferentialGeometry_ from parametric information Transform o2w = ObjectToWorld; dg = new DifferentialGeometry(o2w.Apply(phit), o2w.Apply(dpdu), o2w.Apply(dpdv), o2w.Apply(dndu), o2w.Apply(dndv), u, v, this); // Update _tHit_ for quadric intersection tHit = thit; // Compute _rayEpsilon_ for quadric intersection rayEpsilon = 5e-4d * tHit; return true; }
public override bool Intersect(Ray r, out double tHit, out double rayEpsilon, out DifferentialGeometry dg) { double phi, v; Point phit; tHit = Double.NaN; rayEpsilon = Double.NaN; dg = null; // Transform _Ray_ to object space Ray ray = WorldToObject.Apply(r); // Compute quadratic hyperboloid coefficients double A = a * ray.d.x * ray.d.x + a * ray.d.y * ray.d.y - c * ray.d.z * ray.d.z; double B = 2.0d * (a * ray.d.x * ray.o.x + a * ray.d.y * ray.o.y - c * ray.d.z * ray.o.z); double C = a * ray.o.x * ray.o.x + a * ray.o.y * ray.o.y - c * ray.o.z * ray.o.z - 1; // Solve quadratic equation for _t_ values double t0, t1; if (!Utility.Quadratic(A, B, C, out t0, out t1)) return false; // Compute intersection distance along ray if (t0 > ray.maxt || t1 < ray.mint) return false; double thit = t0; if (t0 < ray.mint) { thit = t1; if (thit > ray.maxt) return false; } // Compute hyperboloid inverse mapping phit = ray.GetPointAt(thit); v = (phit.z - p1.z) / (p2.z - p1.z); Point pr = (1.0d - v) * p1 + v * p2; phi = Math.Atan2(pr.x * phit.y - phit.x * pr.y, phit.x * pr.x + phit.y * pr.y); if (phi < 0) phi += 2 * Math.PI; // Test hyperboloid intersection against clipping parameters if (phit.z < zmin || phit.z > zmax || phi > phiMax) { if (thit == t1) return false; thit = t1; if (t1 > ray.maxt) return false; // Compute hyperboloid inverse mapping phit = ray.GetPointAt(thit); v = (phit.z - p1.z) / (p2.z - p1.z); pr = (1.0d - v) * p1 + v * p2; phi = Math.Atan2(pr.x * phit.y - phit.x * pr.y, phit.x * pr.x + phit.y * pr.y); if (phi < 0) phi += 2 * Math.PI; if (phit.z < zmin || phit.z > zmax || phi > phiMax) return false; } // Compute parametric representation of hyperboloid hit double u = phi / phiMax; // Compute hyperboloid $\dpdu$ and $\dpdv$ double cosphi = Math.Cos(phi), sinphi = Math.Sin(phi); Vector dpdu = new Vector(-phiMax * phit.y, phiMax * phit.x, 0.0d); Vector dpdv = new Vector((p2.x - p1.x) * cosphi - (p2.y - p1.y) * sinphi, (p2.x - p1.x) * sinphi + (p2.y - p1.y) * cosphi, p2.z - p1.z); // Compute hyperboloid $\dndu$ and $\dndv$ Vector d2Pduu = -phiMax * phiMax * new Vector(phit.x, phit.y, 0); Vector d2Pduv = phiMax * new Vector(-dpdv.y, dpdv.x, 0.0d); Vector d2Pdvv = new Vector(0, 0, 0); // Compute coefficients for fundamental forms double E = Geometry.Dot(dpdu, dpdu); double F = Geometry.Dot(dpdu, dpdv); double G = Geometry.Dot(dpdv, dpdv); Vector N = Geometry.Normalize(Geometry.Cross(dpdu, dpdv)); double e = Geometry.Dot(N, d2Pduu); double f = Geometry.Dot(N, d2Pduv); double g = Geometry.Dot(N, d2Pdvv); // Compute $\dndu$ and $\dndv$ from fundamental form coefficients double invEGF2 = 1.0d / (E * G - F * F); Normal dndu = new Normal((f * F - e * G) * invEGF2 * dpdu + (e * F - f * E) * invEGF2 * dpdv); Normal dndv = new Normal((g * F - f * G) * invEGF2 * dpdu + (f * F - g * E) * invEGF2 * dpdv); // Initialize _DifferentialGeometry_ from parametric information Transform o2w = ObjectToWorld; dg = new DifferentialGeometry(o2w.Apply(phit), o2w.Apply(dpdu), o2w.Apply(dpdv), o2w.Apply(dndu), o2w.Apply(dndv), u, v, this); // Update _tHit_ for quadric intersection tHit = thit; // Compute _rayEpsilon_ for quadric intersection rayEpsilon = 5e-4d * tHit; return true; }
public override BSSRDF GetBSSRDF(DifferentialGeometry dg, Transform ObjectToWorld) { DifferentialGeometry dgs; shape.GetShadingGeometry(ObjectToWorld, dg, out dgs); return material.GetBSSRDF(dg, dgs); }
public override bool Intersect(Ray r, out double tHit, out double rayEpsilon, out DifferentialGeometry dg) { throw new NotImplementedException(); }
public Intersection() { dg = new DifferentialGeometry(); }