private DGraph2 FilterPathGraphSelfOverlaps(DGraph2 pathGraph) { PathOverlapRepair repair = new PathOverlapRepair(pathGraph); repair.OverlapRadius = ToolWidth * SelfOverlapToolWidthX; repair.PreserveEdgeFilterF = (eid) => { return(repair.Graph.GetEdgeGroup(eid) > 0); }; repair.Compute(); pathGraph = repair.GetResultGraph(); return(pathGraph); }
/// <summary> /// Convert the input polygons to a set of paths. /// If FilterSelfOverlaps=true, then the paths will be clipped against /// themselves, in an attempt to avoid over-printing. /// </summary> public virtual FillCurveSet2d ShellPolysToPaths(List <GeneralPolygon2d> shell_polys, int nShell) { FillCurveSet2d paths = new FillCurveSet2d(); FillTypeFlags flags = FillTypeFlags.PerimeterShell; if (nShell == 0 && ShellType == ShellTypes.ExternalPerimeters) { flags = FillTypeFlags.OutermostShell; } else if (ShellType == ShellTypes.InternalShell) { flags = FillTypeFlags.InteriorShell; } else if (ShellType == ShellTypes.BridgeShell) { flags = FillTypeFlags.BridgeSupport; } if (FilterSelfOverlaps == false) { foreach (GeneralPolygon2d shell in shell_polys) { paths.Append(shell, flags); } return(paths); } int outer_shell_edgegroup = 100; foreach (GeneralPolygon2d shell in shell_polys) { PathOverlapRepair repair = new PathOverlapRepair(); repair.OverlapRadius = SelfOverlapTolerance; repair.Add(shell, outer_shell_edgegroup); // Ideally want to presreve outermost shell of external perimeters. // However in many cases internal holes are 'too close' to outer border. // So we will still apply to those, but use edge filter to preserve outermost loop. // [TODO] could we be smarter about this somehow? if (PreserveOuterShells && nShell == 0 && ShellType == ShellTypes.ExternalPerimeters) { repair.PreserveEdgeFilterF = (eid) => { return(repair.Graph.GetEdgeGroup(eid) == outer_shell_edgegroup); } } ; repair.Compute(); DGraph2Util.Curves c = DGraph2Util.ExtractCurves(repair.GetResultGraph()); foreach (var polygon in c.Loops) { paths.Append(polygon, flags); } foreach (var polyline in c.Paths) { if (polyline.ArcLength < DiscardTinyPerimterLengthMM) { continue; } if (polyline.Bounds.MaxDim < DiscardTinyPerimterLengthMM) { continue; } paths.Append(new FillPolyline2d(polyline) { TypeFlags = flags }); } } return(paths); }
/// <summary> /// fill poly w/ adjacent straight line segments, connected by connectors /// </summary> protected FillCurveSet2d ComputeFillPaths(GeneralPolygon2d poly) { FillCurveSet2d paths = new FillCurveSet2d(); // smooth the input poly a little bit, this simplifies the filling // (simplify after?) //GeneralPolygon2d smoothed = poly.Duplicate(); //CurveUtils2.LaplacianSmoothConstrained(smoothed, 0.5, 5, ToolWidth / 2, true, false); //poly = smoothed; // compute 2D non-manifold graph consisting of original polygon and // inserted line segments DGraph2 spanGraph = ComputeSpanGraph(poly); if (spanGraph == null || spanGraph.VertexCount == poly.VertexCount) { return(paths); } DGraph2 pathGraph = BuildPathGraph(spanGraph); // filter out self-overlaps from graph if (FilterSelfOverlaps) { PathOverlapRepair repair = new PathOverlapRepair(pathGraph); repair.OverlapRadius = ToolWidth * SelfOverlapToolWidthX; repair.PreserveEdgeFilterF = (eid) => { return(repair.Graph.GetEdgeGroup(eid) > 0); }; repair.Compute(); pathGraph = repair.GetResultGraph(); } HashSet <int> boundaries = new HashSet <int>(); foreach (int vid in pathGraph.VertexIndices()) { if (pathGraph.IsBoundaryVertex(vid)) { boundaries.Add(vid); } if (pathGraph.IsJunctionVertex(vid)) { throw new Exception("DenseLinesFillPolygon: PathGraph has a junction???"); } } // walk paths from boundary vertices while (boundaries.Count > 0) { int start_vid = boundaries.First(); boundaries.Remove(start_vid); int vid = start_vid; int eid = pathGraph.GetVtxEdges(vid)[0]; FillPolyline2d path = new FillPolyline2d() { TypeFlags = this.TypeFlags }; path.AppendVertex(pathGraph.GetVertex(vid)); while (true) { Index2i next = DGraph2Util.NextEdgeAndVtx(eid, vid, pathGraph); eid = next.a; vid = next.b; int gid = pathGraph.GetEdgeGroup(eid); if (gid < 0) { path.AppendVertex(pathGraph.GetVertex(vid), TPVertexFlags.IsConnector); } else { path.AppendVertex(pathGraph.GetVertex(vid)); } if (boundaries.Contains(vid)) { boundaries.Remove(vid); break; } } // discard paths that are too short if (path.ArcLength < MinPathLengthMM) { continue; } // run polyline simplification to get rid of unneccesary detail in connectors // [TODO] we could do this at graph level...) // [TODO] maybe should be checkign for collisions? we could end up creating // non-trivial overlaps here... if (SimplifyAmount != SimplificationLevel.None && path.VertexCount > 2) { PolySimplification2 simp = new PolySimplification2(path); switch (SimplifyAmount) { default: case SimplificationLevel.Minor: simp.SimplifyDeviationThreshold = ToolWidth / 4; break; case SimplificationLevel.Aggressive: simp.SimplifyDeviationThreshold = ToolWidth; break; case SimplificationLevel.Moderate: simp.SimplifyDeviationThreshold = ToolWidth / 2; break; } simp.Simplify(); path = new FillPolyline2d(simp.Result.ToArray()) { TypeFlags = this.TypeFlags }; } paths.Append(path); } // Check to make sure that we are not putting way too much material in the // available volume. Computes extrusion volume from path length and if the // ratio is too high, scales down the path thickness // TODO: do we need to compute volume? If we just divide everything by // height we get the same scaling, no? Then we don't need layer height. if (MaxOverfillRatio > 0) { throw new NotImplementedException("this is not finished yet"); #if false double LayerHeight = 0.2; // AAAHHH hardcoded nonono double len = paths.TotalLength(); double extrude_vol = ExtrusionMath.PathLengthToVolume(LayerHeight, ToolWidth, len); double polygon_vol = LayerHeight * Math.Abs(poly.Area); double ratio = extrude_vol / polygon_vol; if (ratio > MaxOverfillRatio && PathSpacing == ToolWidth) { double use_width = ExtrusionMath.WidthFromTargetVolume(LayerHeight, len, polygon_vol); //System.Console.WriteLine("Extrusion volume: {0} PolyVolume: {1} % {2} ScaledWidth: {3}", //extrude_vol, polygon_vol, extrude_vol / polygon_vol, use_width); foreach (var path in paths.Curves) { path.CustomThickness = use_width; } } #endif } return(paths); }
/// <summary> /// Convert the input polygons to a set of paths. /// If FilterSelfOverlaps=true, then the paths will be clipped against /// themselves, in an attempt to avoid over-printing. /// </summary> public virtual FillCurveSet2d ShellPolysToPaths(List <GeneralPolygon2d> shell_polys, int nShell) { FillCurveSet2d paths = new FillCurveSet2d(); IFillType currentFillType = nShell == 0 ? firstShellFillType ?? fillType : fillType; if (FilterSelfOverlaps == false) { foreach (var shell in shell_polys) { paths.Append(new FillLoop <FillSegment>(shell.Outer.Vertices) { FillType = currentFillType, PerimeterOrder = nShell }); foreach (var hole in shell.Holes) { paths.Append(new FillLoop <FillSegment>(hole.Vertices) { FillType = currentFillType, PerimeterOrder = nShell, IsHoleShell = true });; } } return(paths); } int outer_shell_edgegroup = 100; foreach (GeneralPolygon2d shell in shell_polys) { PathOverlapRepair repair = new PathOverlapRepair(); repair.OverlapRadius = SelfOverlapTolerance; repair.Add(shell, outer_shell_edgegroup); // Ideally want to presreve outermost shell of external perimeters. // However in many cases internal holes are 'too close' to outer border. // So we will still apply to those, but use edge filter to preserve outermost loop. // [TODO] could we be smarter about this somehow? if (PreserveOuterShells && nShell == 0) { repair.PreserveEdgeFilterF = (eid) => { return(repair.Graph.GetEdgeGroup(eid) == outer_shell_edgegroup); } } ; repair.Compute(); DGraph2Util.Curves c = DGraph2Util.ExtractCurves(repair.GetResultGraph()); #region Borrow nesting calculations from PlanarSlice to enforce winding direction PlanarComplex complex = new PlanarComplex(); foreach (Polygon2d poly in c.Loops) { complex.Add(poly); } PlanarComplex.FindSolidsOptions options = PlanarComplex.FindSolidsOptions.Default; options.WantCurveSolids = false; options.SimplifyDeviationTolerance = 0.001; options.TrustOrientations = false; options.AllowOverlappingHoles = false; PlanarComplex.SolidRegionInfo solids = complex.FindSolidRegions(options); foreach (var polygon in solids.Polygons) { polygon.EnforceCounterClockwise(); paths.Append(new FillLoop <FillSegment>(polygon.Outer.Vertices) { FillType = currentFillType, PerimeterOrder = nShell }); foreach (var hole in polygon.Holes) { paths.Append(new FillLoop <FillSegment>(hole.Vertices) { FillType = currentFillType, PerimeterOrder = nShell, IsHoleShell = true, }); } } #endregion Borrow nesting calculations from PlanarSlice to enforce winding direction foreach (var polyline in c.Paths) { if (polyline.ArcLength < DiscardTinyPerimeterLengthMM) { continue; } if (polyline.Bounds.MaxDim < DiscardTinyPerimeterLengthMM) { continue; } paths.Append(new FillCurve <FillSegment>(polyline) { FillType = currentFillType, PerimeterOrder = nShell }); } } return(paths); }