public GaussPointsFit3(IEnumerable <Vector3d> points) { Box = new Box3d(Vector3d.Zero, Vector3d.One); // Compute the mean of the points. int numPoints = 0; foreach (Vector3d v in points) { Box.Center += v; numPoints++; } double invNumPoints = (1.0) / numPoints; Box.Center *= invNumPoints; // Compute the covariance matrix of the points. double sumXX = (double)0, sumXY = (double)0, sumXZ = (double)0; double sumYY = (double)0, sumYZ = (double)0, sumZZ = (double)0; foreach (Vector3d p in points) { Vector3d diff = p - Box.Center; sumXX += diff[0] * diff[0]; sumXY += diff[0] * diff[1]; sumXZ += diff[0] * diff[2]; sumYY += diff[1] * diff[1]; sumYZ += diff[1] * diff[2]; sumZZ += diff[2] * diff[2]; } sumXX *= invNumPoints; sumXY *= invNumPoints; sumXZ *= invNumPoints; sumYY *= invNumPoints; sumYZ *= invNumPoints; sumZZ *= invNumPoints; double[] matrix = new double[] { sumXX, sumXY, sumXZ, sumXY, sumYY, sumYZ, sumXZ, sumYZ, sumZZ }; // Setup the eigensolver. SymmetricEigenSolver solver = new SymmetricEigenSolver(3, 4096); int iters = solver.Solve(matrix, SymmetricEigenSolver.SortType.Increasing); ResultValid = (iters > 0 && iters < SymmetricEigenSolver.NO_CONVERGENCE); Box.Extent = new Vector3d(solver.GetEigenvalues()); double[] evectors = solver.GetEigenvectors(); Box.AxisX = new Vector3d(evectors[0], evectors[1], evectors[2]); Box.AxisY = new Vector3d(evectors[3], evectors[4], evectors[5]); Box.AxisZ = new Vector3d(evectors[6], evectors[7], evectors[8]); }
public OrthogonalPlaneFit3(IEnumerable <Vector3d> points) { // Compute the mean of the points. Origin = Vector3d.Zero; int numPoints = 0; foreach (Vector3d v in points) { Origin += v; numPoints++; } double invNumPoints = (1.0) / numPoints; Origin *= invNumPoints; // Compute the covariance matrix of the points. double sumXX = (double)0, sumXY = (double)0, sumXZ = (double)0; double sumYY = (double)0, sumYZ = (double)0, sumZZ = (double)0; foreach (Vector3d p in points) { Vector3d diff = p - Origin; sumXX += diff[0] * diff[0]; sumXY += diff[0] * diff[1]; sumXZ += diff[0] * diff[2]; sumYY += diff[1] * diff[1]; sumYZ += diff[1] * diff[2]; sumZZ += diff[2] * diff[2]; } sumXX *= invNumPoints; sumXY *= invNumPoints; sumXZ *= invNumPoints; sumYY *= invNumPoints; sumYZ *= invNumPoints; sumZZ *= invNumPoints; double[] matrix = new double[] { sumXX, sumXY, sumXZ, sumXY, sumYY, sumYZ, sumXZ, sumYZ, sumZZ }; // Setup the eigensolver. SymmetricEigenSolver solver = new SymmetricEigenSolver(3, 4096); int iters = solver.Solve(matrix, SymmetricEigenSolver.SortType.Decreasing); ResultValid = (iters > 0 && iters < SymmetricEigenSolver.NO_CONVERGENCE); Normal = new Vector3d(solver.GetEigenvector(2)); }
// The quadratic fit is // // 0 = C[0] + C[1]*X + C[2]*Y + C[3]*X^2 + C[4]*Y^2 + C[5]*X*Y // // subject to Length(C) = 1. Minimize E(C) = C^t M C with Length(C) = 1 // and M = (sum_i V_i)(sum_i V_i)^t where // // V = (1, X, Y, X^2, Y^2, X*Y) // // The minimum value is the smallest eigenvalue of M and C is a corresponding // unit length eigenvector. // // Input: // n = number of points to fit // p[0..n-1] = array of points to fit // // Output: // c[0..5] = coefficients of quadratic fit (the eigenvector) // return value of function is nonnegative and a measure of the fit // (the minimum eigenvalue; 0 = exact fit, positive otherwise) // Canonical forms. The quadratic equation can be factored into // P^T A P + B^T P + K = 0 where P = (X,Y,Z), K = C[0], B = (C[1],C[2],C[3]), // and A is a 3x3 symmetric matrix with A00 = C[4], A11 = C[5], A22 = C[6], // A01 = C[7]/2, A02 = C[8]/2, and A12 = C[9]/2. Matrix A = R^T D R where // R is orthogonal and D is diagonal (using an eigendecomposition). Define // V = R P = (v0,v1,v2), E = R B = (e0,e1,e2), D = diag(d0,d1,d2), and f = K // to obtain // // d0 v0^2 + d1 v1^2 + d2 v^2 + e0 v0 + e1 v1 + e2 v2 + f = 0 // // The characterization depends on the signs of the d_i. public static double Fit(Vector2d[] points, double[] coefficients) { DenseMatrix A = new DenseMatrix(6, 6); int numPoints = points.Length; for (int i = 0; i < numPoints; ++i) { double x = points[i].x; double y = points[i].y; double x2 = x * x; double y2 = y * y; double xy = x * y; double x3 = x * x2; double xy2 = x * y2; double x2y = x * xy; double y3 = y * y2; double x4 = x * x3; double x2y2 = x * xy2; double x3y = x * x2y; double y4 = y * y3; double xy3 = x * y3; A[0, 1] += x; A[0, 2] += y; A[0, 3] += x2; A[0, 4] += y2; A[0, 5] += xy; A[1, 3] += x3; A[1, 4] += xy2; A[1, 5] += x2y; A[2, 4] += y3; A[3, 3] += x4; A[3, 4] += x2y2; A[3, 5] += x3y; A[4, 4] += y4; A[4, 5] += xy3; } A[0, 0] = (double)numPoints; A[1, 1] = A[0, 3]; A[1, 2] = A[0, 5]; A[2, 2] = A[0, 4]; A[2, 3] = A[1, 5]; A[2, 5] = A[1, 4]; A[5, 5] = A[3, 4]; for (int row = 0; row < 6; ++row) { for (int col = 0; col < row; ++col) { A[row, col] = A[col, row]; } } double invNumPoints = 1.0 / (double)numPoints; for (int row = 0; row < 6; ++row) { for (int col = 0; col < 6; ++col) { A[row, col] *= invNumPoints; } } SymmetricEigenSolver es = new SymmetricEigenSolver(6, 1024); es.Solve(A.Buffer, SymmetricEigenSolver.SortType.Increasing); es.GetEigenvector(0, coefficients); // For an exact fit, numeric round-off errors might make the minimum // eigenvalue just slightly negative. Return the absolute value since // the application might rely on the return value being nonnegative. return(Math.Abs(es.GetEigenvalue(0))); }
// If you think your points are nearly circular, use this. The circle is of // the form C'[0]+C'[1]*X+C'[2]*Y+C'[3]*(X^2+Y^2), where Length(C') = 1. The // function returns C = (C'[0]/C'[3],C'[1]/C'[3],C'[2]/C'[3]), so the fitted // circle is C[0]+C[1]*X+C[2]*Y+X^2+Y^2. The center is (xc,yc) = // -0.5*(C[1],C[2]) and the radius is r = sqrt(xc*xc+yc*yc-C[0]). public static double FitCircle2(Vector2d[] points, out Circle2d circle) { DenseMatrix A = new DenseMatrix(4, 4); int numPoints = points.Length; for (int i = 0; i < numPoints; ++i) { double x = points[i].x; double y = points[i].y; double x2 = x * x; double y2 = y * y; double xy = x * y; double r2 = x2 + y2; double xr2 = x * r2; double yr2 = y * r2; double r4 = r2 * r2; A[0, 1] += x; A[0, 2] += y; A[0, 3] += r2; A[1, 1] += x2; A[1, 2] += xy; A[1, 3] += xr2; A[2, 2] += y2; A[2, 3] += yr2; A[3, 3] += r4; } A[0, 0] = (double)numPoints; for (int row = 0; row < 4; ++row) { for (int col = 0; col < row; ++col) { A[row, col] = A[col, row]; } } double invNumPoints = 1.0 / (double)numPoints; for (int row = 0; row < 4; ++row) { for (int col = 0; col < 4; ++col) { A[row, col] *= invNumPoints; } } SymmetricEigenSolver es = new SymmetricEigenSolver(4, 1024); es.Solve(A.Buffer, SymmetricEigenSolver.SortType.Increasing); double[] evector = new double[4]; es.GetEigenvector(0, evector); double inv = 1.0 / evector[3]; // TODO: Guard against zero divide? Vector3d coefficients = Vector3d.Zero; for (int row = 0; row < 3; ++row) { coefficients[row] = inv * evector[row]; } Vector2d center = new Vector2d(-0.5 * coefficients[1], -0.5 * coefficients[2]); double r = Math.Sqrt(Math.Abs(center.LengthSquared - coefficients[0])); circle = new Circle2d(center, r); // For an exact fit, numeric round-off errors might make the minimum // eigenvalue just slightly negative. Return the absolute value since // the application might rely on the return value being nonnegative. return(Math.Abs(es.GetEigenvalue(0))); }