private Dictionary <int, int> byKmeans(double[][] v) { K_means k_mean = new K_means(); //k_mean.addSetting(k, maxLoop, Normalized(x), epsilon, sigma, T, M); k_mean.addSetting(k, maxLoop, x, epsilon, sigma, T, M); k_mean.run(v); v_Last = k_mean.getV(); return(k_mean.get_Clustered_Data()); }
public void run() { int n = x.Length; // n is number of user of group int d = x[0].Length; // d is number of Item of rating matrix double[][] v = new double[k][]; v = CREATE_V_Init_01(x, k); for (int i = 0; i < 3; i++) { int loop = 1; K_means k_mean = new K_means(); k_mean.addSetting(k, loop, x, epsilon, sigma, T, M); k_mean.run(v); v = k_mean.getV(); //K_means_DCA k_mean_DCA = new K_means_DCA(); //k_mean_DCA.addSetting(k, loop, x, epsilon, sigma, T, M); //k_mean_DCA.run(v); //v = k_mean_DCA.getV(); } Repeat(n, d, v); }
private Dictionary<int, int> byKmeans(double[][] v) { K_means k_mean = new K_means(); //k_mean.addSetting(k, maxLoop, Normalized(x), epsilon, sigma, T, M); k_mean.addSetting(k, maxLoop, x, epsilon, sigma, T, M); k_mean.run(v); v_Last = k_mean.getV(); return k_mean.get_Clustered_Data(); }