public void TestMCTStree() { WeightVectorAll weights = new WeightVectorAll { Corner = 0, Empty_cells = 0, Highest_tile = 0, Monotonicity = 0, Points =0, Smoothness = 0, Snake = 1, Trapped_penalty = 0 }; int timeLimit = 100; int[][] state1 = new int[][] { new int[]{1024,16,0,0}, new int[]{4,32,2,0}, new int[]{64,16,0,0}, new int[]{16,16,2,2} }; int[][] state2 = new int[][] { new int[]{2,0,2,0}, new int[]{8,2,0,0}, new int[]{16,8,4,0}, new int[]{64,4,4,0} }; int[][] state3 = new int[][] { new int[]{16,16,16,4}, new int[]{64,4,0,0}, new int[]{8,0,2,0}, new int[]{16,0,0,0} }; int[][] state4 = new int[][] { new int[]{0,0,0,8}, new int[]{0,0,16,16}, new int[]{2,0,32,32}, new int[]{2,4,16,8} }; Console.WriteLine("Testing state1:"); GameEngine gameEngine = new GameEngine(); Minimax minimax = new Minimax(gameEngine, 0); Expectimax expectimax = new Expectimax(gameEngine, 0); MonteCarlo mcts = new MonteCarlo(gameEngine); Move minimaxMove = minimax.IterativeDeepening(new State(state1, CalculateScore(state1), GameEngine.PLAYER), timeLimit); Move expectimaxMove = expectimax.IterativeDeepening(new State(state1, CalculateScore(state1), GameEngine.PLAYER), timeLimit, weights); Move mctsMove = (mcts.TimeLimitedMCTS(new State(state1, CalculateScore(state1), GameEngine.PLAYER), timeLimit)).GeneratingMove; Console.WriteLine("Minimax move chosen: " + ((PlayerMove)minimaxMove).Direction); Console.WriteLine("Expectimax move chosen: " + ((PlayerMove)expectimaxMove).Direction); Console.WriteLine("MCTS move chosen: " + ((PlayerMove)mctsMove).Direction); Console.WriteLine("Testing state2:"); minimaxMove = minimax.IterativeDeepening(new State(state2, CalculateScore(state2), GameEngine.PLAYER), timeLimit); expectimaxMove = expectimax.IterativeDeepening(new State(state2, CalculateScore(state2), GameEngine.PLAYER), timeLimit, weights); mctsMove = (mcts.TimeLimitedMCTS(new State(state2, CalculateScore(state2), GameEngine.PLAYER), timeLimit)).GeneratingMove; Console.WriteLine("Minimax move chosen: " + ((PlayerMove)minimaxMove).Direction); Console.WriteLine("Expectimax move chosen: " + ((PlayerMove)expectimaxMove).Direction); Console.WriteLine("MCTS move chosen: " + ((PlayerMove)mctsMove).Direction); Console.WriteLine("Testing state3:"); minimaxMove = minimax.IterativeDeepening(new State(state3, CalculateScore(state3), GameEngine.PLAYER), timeLimit); expectimaxMove = expectimax.IterativeDeepening(new State(state3, CalculateScore(state3), GameEngine.PLAYER), timeLimit, weights); mctsMove = (mcts.TimeLimitedMCTS(new State(state3, CalculateScore(state3), GameEngine.PLAYER), timeLimit)).GeneratingMove; Console.WriteLine("Minimax move chosen: " + ((PlayerMove)minimaxMove).Direction); Console.WriteLine("Expectimax move chosen: " + ((PlayerMove)expectimaxMove).Direction); Console.WriteLine("MCTS move chosen: " + ((PlayerMove)mctsMove).Direction); Console.WriteLine("Testing state4:"); minimaxMove = minimax.IterativeDeepening(new State(state4, CalculateScore(state4), GameEngine.PLAYER), timeLimit); expectimaxMove = expectimax.IterativeDeepening(new State(state4, CalculateScore(state4), GameEngine.PLAYER), timeLimit, weights); mctsMove = (mcts.TimeLimitedMCTS(new State(state4, CalculateScore(state4), GameEngine.PLAYER), timeLimit)).GeneratingMove; Console.WriteLine("Minimax move chosen: " + ((PlayerMove)minimaxMove).Direction); Console.WriteLine("Expectimax move chosen: " + ((PlayerMove)expectimaxMove).Direction); Console.WriteLine("MCTS move chosen: " + ((PlayerMove)mctsMove).Direction); }
// Runs an entire game using the given AI type to decide on moves private static State RunAIGame(AI_TYPE AItype, bool print, int depth = 0, int timeLimit = 0, int iterationLimit = 0) { GameEngine game = new GameEngine(); State end = null; if (AItype == AI_TYPE.CLASSIC_MINIMAX) { Minimax minimax = new Minimax(game, depth); end = minimax.RunClassicMinimax(print); } else if (AItype == AI_TYPE.ALPHA_BETA) { Minimax minimax = new Minimax(game, depth); end = minimax.RunAlphaBeta(print); } else if (AItype == AI_TYPE.ITERATIVE_DEEPENING_ALPHA_BETA) { Minimax minimax = new Minimax(game, depth); end = minimax.RunIterativeDeepeningAlphaBeta(print, timeLimit); } else if (AItype == AI_TYPE.PARALLEL_ALPHA_BETA) { Minimax minimax = new Minimax(game, depth); end = minimax.RunParallelAlphaBeta(print); } else if (AItype == AI_TYPE.PARALLEL_ITERATIVE_DEEPENING_ALPHA_BETA) { Minimax minimax = new Minimax(game, depth); end = minimax.RunParallelIterativeDeepeningAlphaBeta(print, timeLimit); } else if (AItype == AI_TYPE.CLASSIC_EXPECTIMAX) { Expectimax expectimax = new Expectimax(game, depth); end = expectimax.RunClassicExpectimax(print, weights); } else if (AItype == AI_TYPE.EXPECTIMAX_STAR1) { Expectimax expectimax = new Expectimax(game, depth); end = expectimax.RunStar1Expectimax(print, weights); } else if (AItype == AI_TYPE.EXPECTIMAX_STAR1_FW_PRUNING) { Expectimax expectimax = new Expectimax(game, depth); end = expectimax.RunStar1WithUnlikelyPruning(print, weights); } else if (AItype == AI_TYPE.ITERATIVE_DEEPENING_EXPECTIMAX) { Expectimax expectimax = new Expectimax(game, depth); end = expectimax.RunIterativeDeepeningExpectimax(print, timeLimit, weights); } else if (AItype == AI_TYPE.PARALLEL_EXPECTIMAX) { Expectimax expectimax = new Expectimax(game, depth); end = expectimax.RunParallelClassicExpectimax(print, weights); } else if (AItype == AI_TYPE.PARALLEL_ITERATIVE_DEEPENING_EXPECTIMAX) { Expectimax expectimax = new Expectimax(game, depth); end = expectimax.RunParallelIterativeDeepeningExpectimax(print, timeLimit, weights); } else if (AItype == AI_TYPE.TT_ITERATIVE_DEEPENING_EXPECTIMAX) { Expectimax exptectimax = new Expectimax(game, depth); end = exptectimax.RunTTExpectimax(print, timeLimit, weights); } else if (AItype == AI_TYPE.TT_ITERATIVE_DEEPENING_STAR1) { Expectimax expectimax = new Expectimax(game, depth); end = expectimax.RunTTStar1(print, timeLimit, weights); } else if (AItype == AI_TYPE.EXPECTIMAX_WITH_ALL_IMPROVEMENTS) { Expectimax expectimax = new Expectimax(game, depth); end = expectimax.RunTTIterativeDeepeningExpectimaxWithStar1andForwardPruning(print, timeLimit, weights); } else if (AItype == AI_TYPE.EXPECTIMAX_WITH_ALL_IMPROVEMENTS_NO_FORWARDPRUNING) { Expectimax expectimax = new Expectimax(game, depth); end = expectimax.RunTTIterativeDeepeningExpectimaxWithStar1(print, timeLimit, weights); } else if (AItype == AI_TYPE.ITERATION_LIMITED_MCTS) { MonteCarlo MCTS = new MonteCarlo(game); end = MCTS.RunIterationLimitedMCTS(print, iterationLimit); } else if (AItype == AI_TYPE.TIME_LIMITED_MCTS) { MonteCarlo MCTS = new MonteCarlo(game); end = MCTS.RunTimeLimitedMCTS(print, timeLimit); } else if (AItype == AI_TYPE.ROOT_PARALLEL_ITERATION_LIMITED_MCTS) { MonteCarlo MCTS = new MonteCarlo(game); end = MCTS.RunRootParallelizationIterationLimitedMCTS(print, iterationLimit, NUM_THREADS); } else if (AItype == AI_TYPE.ROOT_PARALLEL_TIME_LIMITED_MCTS) { MonteCarlo MCTS = new MonteCarlo(game); end = MCTS.RunRootParallelizationTimeLimitedMCTS(print, timeLimit, NUM_THREADS); } else if (AItype == AI_TYPE.EXPECTIMAX_MCTS_TIME_LIMITED) { HeuristicLearning HL = new HeuristicLearning(game); end = HL.RunExpectimaxMCTStimeLimited(print, depth, timeLimit); } else if (AItype == AI_TYPE.EXPECTIMAX_MCTS_WITH_SIMULATIONS_TIME_LIMITED) { HeuristicLearning HL = new HeuristicLearning(game); end = HL.RunExpectimaxMCTSwithSimulations(print, depth, timeLimit); } else if (AItype == AI_TYPE.FINAL_COMBI) { HeuristicLearning HL = new HeuristicLearning(game); end = HL.RunParallelizationMCTSExpectimaxCombi(print, depth, timeLimit); } else { throw new Exception(); } if (print) { Console.WriteLine("GAME OVER!\nFinal score: " + game.scoreController.getScore()); } return end; }