/// <summary> /// Interpolates intermediate points in uv and fits a curve /// </summary> /// <param name="c">the curve to fit</param> /// <param name="points">points to fit to, minimum 2</param> internal static void InterpoFit(MouldCurve c, IFitPoint[] points) { if (points.Length <= 1 || points.Length >= 5)//need at least 2 points to fit a curve, can't interpolate more than 4 return; //recalculate s-positions based on xyz-values //if (RePos) //{ // Vect2 uv = new Vect2(); // Vect3 x0 = new Vect3(); // Vect3 x1 = new Vect3(); // fits[0][0] = 0;//initialize s paramter // Surface.xVal(fits[0].UV, ref x0);//initialize starting x point // for (int nFit = 1; nFit < fits.Length; nFit++) // { // Surface.xVal(fits[nFit].UV, ref x1); // fits[nFit][0] = fits[nFit - 1][0] + x1.Distance(x0); // x1.Set(x0);//store previous x point // } // for (int nFit = 0; nFit < fits.Length; nFit++) // fits[nFit][0] /= fits.Last()[0];//convert length to position // fits.Last()[0] = 1;//enforce unit length //} //linear uv interpolation to match minimum 5 points required double[][] uFits = new double[2][]; double[] sFits = new double[5]; uFits[0] = new double[5]; uFits[1] = new double[5]; double p; int i, nint = 0; Vect3 x2 = new Vect3(), x1 = new Vect3(); Vect2 umid = new Vect2(); Dictionary<int, int> FitstoSFits = new Dictionary<int, int>(); if (points.Length == 4) { //store fitpoints sFits[nint] = points[nint][0] = 0; uFits[0][nint] = points[nint][1]; uFits[1][nint] = points[nint][2]; c.xVal(points[nint].UV, ref x1); FitstoSFits[nint] = nint; nint++; //store fitpoints //sFits[nint] = fits[nint][0]; uFits[0][nint] = points[nint][1]; uFits[1][nint] = points[nint][2]; c.xVal(points[nint].UV, ref x2); sFits[nint] = x2.Distance(x1) + sFits[nint - 1]; FitstoSFits[nint] = nint; nint++; //insert midpoint //sFits[nint] = (fits[nint][0] + fits[nint - 1][0]) / 2.0; umid = points[nint].UV + points[nint - 1].UV; umid /= 2; uFits[0][nint] = umid[0]; uFits[1][nint] = umid[1]; c.xVal(umid, ref x1); sFits[nint] = x2.Distance(x1) + sFits[nint - 1]; nint++; //store fitpoints //sFits[nint] = fits[nint-1][0]; uFits[0][nint] = points[nint - 1][1]; uFits[1][nint] = points[nint - 1][2]; c.xVal(points[nint - 1].UV, ref x2); sFits[nint] = x2.Distance(x1) + sFits[nint - 1]; FitstoSFits[nint - 1] = nint; nint++; //store fitpoints //sFits[nint] = fits[nint-1][0]; uFits[0][nint] = points[nint - 1][1]; uFits[1][nint] = points[nint - 1][2]; c.xVal(points[nint - 1].UV, ref x1); sFits[nint] = x2.Distance(x1) + sFits[nint - 1]; FitstoSFits[nint - 1] = nint; nint++; } else { int num = (5 - points.Length) / (points.Length - 1);//insertion points num = num < 1 ? 1 : num; for (i = 0; i < points.Length - 1; i++) { //store fitpoints //sFits[nint] = fits[i][0]; uFits[0][nint] = points[i][1]; uFits[1][nint] = points[i][2]; FitstoSFits[i] = nint; c.xVal(points[i].UV, ref x1); if (i == 0) { sFits[nint] = 0; } else { sFits[nint] = x2.Distance(x1) + sFits[nint - 1]; } x2.Set(x1);//store xprev nint++; for (int j = 1; j <= num; j++) { //interpolate insertion points and store p = BLAS.interpolant(j, num + 2); //sFits[nint] = BLAS.interpolate(p, fits[i + 1][0], fits[i][0]); umid[0] = uFits[0][nint] = BLAS.interpolate(p, points[i + 1][1], points[i][1]); umid[1] = uFits[1][nint] = BLAS.interpolate(p, points[i + 1][2], points[i][2]); c.xVal(umid, ref x1); sFits[nint] = x2.Distance(x1) + sFits[nint - 1]; x2.Set(x1);//store xprev nint++; } } //endpoint //sFits[nint] = 1; uFits[0][nint] = points[i][1]; uFits[1][nint] = points[i][2]; c.xVal(points[i].UV, ref x1); sFits[nint] = x2.Distance(x1) + sFits[nint - 1]; System.Diagnostics.Debug.Assert(nint == 4); FitstoSFits[i] = nint; } for (i = 0; i < sFits.Length; i++) sFits[i] /= sFits.Last(); //sFits[sFits.Length - 1] = 1; foreach (int key in FitstoSFits.Keys) points[key][0] = sFits[FitstoSFits[key]]; c.FitPoints = points; c.ReSpline(sFits, uFits); }
/// <summary> /// Fits a multi-segement geodesic between the specified fitpoints optionally specifying which segments to girth /// </summary> /// <param name="points">the array of fitpoints, must be more than 2</param> /// <param name="bGirths">an array specifying which segments to girth and which to spline /// count is 1 less than the fitpoints count /// can be null which defaults to first and last segment girths</param> /// <returns>true if successful, false otherwise</returns> internal static bool Geo(MouldCurve g, IFitPoint[] points) { if (points == null || points.Length < 2) return false; else if (points.Length == 2 && g.IsGirth(0)) return Geo(g, points[0], points[1]); //compiled piecewise values List<double> S = new List<double>(); List<Vect2> U = new List<Vect2>(); //segment values double[] spos = null; Vect2[] upos = null; Vect3 xyz = new Vect3(), xyp = new Vect3(); //initialize S and U points[0].S = 0; S.Add(0); U.Add(points[0].UV); for (int i = 1; i < points.Length; i++) { //span a geo between the fitpoints //if (i % 2 == 1) if( g.IsGirth(i-1) ) { if (!GeoSegment(g, points[i - 1], points[i], ref spos, ref upos)) return false; for (int nS = 1; nS < spos.Length; nS++) { //scale the spos by length to get distance S.Add(spos[nS] * g.Length + points[i - 1].S); //copy the upos U.Add(upos[nS]); } } else// if (i % 2 == 0) { g.xVal(points[i - 1].UV, ref xyp); g.xVal(points[i].UV, ref xyz); S.Add(xyz.Distance(xyp) + points[i-1].S); U.Add(points[i].UV); } points[i].S = S.Last();//store the curent length for paramterization } //reparamaterize g.Length = S.Last(); for (int i = 0; i < S.Count; i++) S[i] /= g.Length; for (int i = 0; i < points.Length; i++) points[i].S /= g.Length; //spline the combined points g.ReSpline(S.ToArray(), U.ToArray()); g.FitPoints = points; return true; }
/// <summary> /// fit a curve to the specified points /// requires S parameter specified for each point /// requires at least 5 points /// </summary> /// <param name="points">points to fit to, minimum 5</param> internal static void SimpleFit(MouldCurve c, IFitPoint[] points) { Vect2 uv = new Vect2(); Vect3 x0 = new Vect3(); Vect3 x1 = new Vect3(); double[][] uFits = new double[2][]; double[] sFits = new double[points.Length]; uFits[0] = new double[points.Length]; uFits[1] = new double[points.Length]; //complile fitpoints to fitting arrays sFits[0] = 0; points[0][0] = 0; c.xVal(points[0].UV, ref x0);//initialize starting x point for (int nFit = 0; nFit < points.Length; nFit++) { //sFits[nFit] = fits[nFit][0]; uFits[0][nFit] = points[nFit][1]; uFits[1][nFit] = points[nFit][2]; if (nFit > 0) { c.xVal(points[nFit].UV, ref x1); points[nFit][0] = points[nFit - 1][0] + x1.Distance(x0); x0.Set(x1);//store previous x point } } for (int nFit = 0; nFit < points.Length; nFit++) sFits[nFit] = points[nFit][0] /= points.Last()[0];//convert length to position //sFits[sFits.Length-1] = fits.Last()[0] = 1;//enforce unit length c.FitPoints = points; c.ReSpline(sFits, uFits); }
/// <summary> /// using the start, end and passed geo fit points will slide the points along their normals to achieve a geodesic /// </summary> /// <param name="g">the curve object to spline</param> /// <param name="start">the starting point of this segment</param> /// <param name="end">the ending point of this segment</param> /// <param name="sFits">the s-positons of each geo-point</param> /// <param name="uFits">the u-positons of each geo-point</param> /// <returns>true if successful, false otherwise</returns> static bool FitGeo(MouldCurve g, IFitPoint start, IFitPoint end, double[] sFits, Vect2[] uFits) { int NumFits = sFits.Length; int INC = NumFits - 1; int i; Vect2[] uNor = new Vect2[NumFits]; Vect3 xyz = new Vect3(), dxu = new Vect3(), dxv = new Vect3(); Vect2 ut = new Vect2(), un = new Vect2(); double a11, a12, a22, det; //calculate insurface normals at each fitpoint uNor[0] = new Vect2();//fixed endpoint doesnt need normal for (i = 1; i < INC; i++) { g.Surface.xVec(uFits[i], ref xyz, ref dxu, ref dxv); //covariant metric tensor components a11 = dxu.Norm; a12 = dxu.Dot(dxv); a22 = dxv.Norm; det = Math.Sqrt(a11 * a22 - a12 * a12); //tangent(secant) vector u components ut = uFits[i + 1] - uFits[i - 1]; //contravariant normal vector components in the surface plane un[0] = (a12 * ut[0] + a22 * ut[1]) / det; un[1] = -(a11 * ut[0] + a12 * ut[1]) / det; //store unit normal u components un.Magnitude = 1; uNor[i] = new Vect2(un); } uNor[INC] = new Vect2();//fixed endpoint doesnt need normal Vect3 xPrev = new Vect3(); Vect3 ddxu = new Vect3(), ddxv = new Vect3(), dduv = new Vect3(); Vect3[] xNor = new Vect3[NumFits]; Vect3[] dxNor = new Vect3[NumFits]; Vect3[] xTan = new Vect3[NumFits]; double[] xLen = new double[NumFits]; bool Conver = false; int nNwt; Vector x; DenseVector sNor; for (nNwt = 0; nNwt < 50; nNwt++) { xNor[0] = new Vect3(); //update startpoint slide position if (start is SlidePoint) { dxNor[0] = new Vect3(); (start as SlidePoint).Curve.xCvt((start as SlidePoint).SCurve, ref uFits[0], ref xPrev, ref xNor[0], ref dxNor[0]); //uFits[0][0] = FitPoints[0][1]; //uFits[0][1] = FitPoints[0][2]; } else g.xVal(uFits[0], ref xPrev); //update endpoint slide position if (end is SlidePoint) { uFits[INC][0] = end[1]; uFits[INC][1] = end[2]; } xLen[0] = 0; //calc internal point vectors for (i = 1; i < NumFits; i++) { g.Surface.xCvt(uFits[i], ref xyz, ref dxu, ref dxv, ref ddxu, ref ddxv, ref dduv); a11 = uNor[i][0] * uNor[i][0]; a12 = uNor[i][0] * uNor[i][1] * 2; a22 = uNor[i][1] * uNor[i][1]; // insurface normal x components dxu.Scale(uNor[i][0]); dxv.Scale(uNor[i][1]); xNor[i] = dxu + dxv; //insurface normal x derivatives ddxu.Scale(a11); dduv.Scale(a12); ddxv.Scale(a22); dxNor[i] = ddxu + dduv + ddxv; //forward facing tangent vector xTan[i] = xyz - xPrev; xPrev.Set(xyz); xLen[i] = xTan[i].Magnitude;//segment length xLen[0] += xLen[i];//accumulate total length xTan[i].Magnitude = 1;//unit tangent vector } //update endpoint slide position if (end is SlidePoint) { (end as SlidePoint).Curve.xCvt((end as SlidePoint).SCurve, ref uFits[INC], ref xyz, ref xNor[INC], ref dxNor[INC]); } DenseMatrix A = new DenseMatrix(NumFits); sNor = new DenseVector(NumFits); double p0, pp, d, d0, dp, gm, g0, gp; int ix; //slide startpoint if (start is SlidePoint) { //mid point normal vector dotted with end point tangent vectors pp = xNor[0].Dot(xTan[1]); for (g0 = gp = 0, ix = 0; ix < 3; ix++) { //midpoint tangent and curavture variantion dp = (xNor[0][ix] - pp * xTan[1][ix]) / xLen[1]; //mid and top point gradients g0 += -dp * xNor[0][ix] + xTan[1][ix] * dxNor[0][ix]; gp += dp * xNor[1][ix]; } //geodesic residual and gradients A[0, 0] = g0; A[0, 1] = gp; sNor[0] = pp; } else//fixed start point { A[0, 0] = 1; sNor[0] = 0; } for (i = 1; i < INC; i++)//internal points { //midpoint normal dotted with tangents p0 = xNor[i].Dot(xTan[i]);// BLAS.dot(xNor[i], xTan[i]); pp = xNor[i].Dot(xTan[i + 1]);//BLAS.dot(xNor[i], xTan[i + 1]); for (gm = g0 = gp = 0, ix = 0; ix < 3; ix++) { //midpoint curvature vector d = xTan[i + 1][ix] - xTan[i][ix]; //midpoint tangent and curavture variantion d0 = (xNor[i][ix] - p0 * xTan[i][ix]) / xLen[i]; dp = (xNor[i][ix] - pp * xTan[i + 1][ix]) / xLen[i + 1]; //bottom, mid and top point gradients gm += d0 * xNor[i - 1][ix]; g0 += (-d0 - dp) * xNor[i][ix] + d * dxNor[i][ix]; gp += dp * xNor[i + 1][ix]; } A[i, i - 1] = gm; A[i, i] = g0; A[i, i + 1] = gp; sNor[i] = -p0 + pp; } if (end is SlidePoint)//slide endpoint { p0 = xNor[i].Dot(xTan[i]); for (gm = g0 = 0, ix = 0; ix < 3; ix++) { //midpoint tangent and curavture variantion d0 = (xNor[i][ix] - p0 * xTan[i][ix]) / xLen[i]; //bottom, mid and top point gradients gm += d0 * xNor[i - 1][ix]; g0 += -d0 * xNor[i][ix] - xTan[i][ix] * dxNor[i][ix]; } A[i, i - 1] = gm; A[i, i] = g0; sNor[i] = -p0; } else//fixed endpoint { A[i, i] = 1; sNor[i] = 0; } LU decomp = A.LU(); x = (Vector)decomp.Solve(sNor); double Reduce = Math.Min(1, .05 / x.AbsoluteMaximum()); if( start is SlidePoint) (start as SlidePoint).SCurve -= x[0] * Reduce; if( end is SlidePoint) (end as SlidePoint).SCurve -= x[INC] * Reduce; for (i = 1; i < NumFits; i++)//increment uv points { uFits[i][0] -= x[i] * uNor[i][0] * Reduce; uFits[i][1] -= x[i] * uNor[i][1] * Reduce; } if (nNwt < 5) { //keep initial (s)-increments within bounds if (start is SlidePoint) (start as SlidePoint).SCurve = Utilities.LimitRange(0, (start as SlidePoint).SCurve, 1); if (end is SlidePoint) (end as SlidePoint).SCurve = Utilities.LimitRange(0, (end as SlidePoint).SCurve, 1); // keep initial (u)-increments within bounds for (i = 1; i < NumFits - 1; i++) { uFits[i][0] = Utilities.LimitRange(0, uFits[i][0], 1); uFits[i][1] = Utilities.LimitRange(-.125, uFits[i][1], 1.125); } } double xmax = x.AbsoluteMaximum(); double smax = sNor.AbsoluteMaximum(); if (Conver = (x.AbsoluteMaximum() < 1e-8 && sNor.AbsoluteMaximum() < 1e-7)) break; } if (!Conver) return false; g.Length = xLen[0];//store length //calculate unit length (s)-parameter values sFits[0] = 0; for (i = 1; i < NumFits; i++) sFits[i] = sFits[i - 1] + xLen[i] / xLen[0]; //g.m_uvs = uFits; g.ReSpline(sFits, uFits); return true; }