void loadCubemap(string filename, VkFormat format, bool forceLinearTiling) { KtxFile texCube; using (var fs = File.OpenRead(filename)) { texCube = KtxFile.Load(fs, readKeyValuePairs: false); } cubeMap.width = texCube.Header.PixelWidth; cubeMap.height = texCube.Header.PixelHeight; cubeMap.mipLevels = texCube.Header.NumberOfMipmapLevels; VkMemoryAllocateInfo memAllocInfo = Initializers.memoryAllocateInfo(); VkMemoryRequirements memReqs; // Create a host-visible staging buffer that contains the raw image data VkBuffer stagingBuffer; VkDeviceMemory stagingMemory; VkBufferCreateInfo bufferCreateInfo = Initializers.bufferCreateInfo(); bufferCreateInfo.size = texCube.GetTotalSize(); // This buffer is used as a transfer source for the buffer copy bufferCreateInfo.usage = VkBufferUsageFlags.TransferSrc; bufferCreateInfo.sharingMode = VkSharingMode.Exclusive; Util.CheckResult(vkCreateBuffer(device, &bufferCreateInfo, null, &stagingBuffer)); // Get memory requirements for the staging buffer (alignment, memory type bits) vkGetBufferMemoryRequirements(device, stagingBuffer, &memReqs); memAllocInfo.allocationSize = memReqs.size; // Get memory type index for a host visible buffer memAllocInfo.memoryTypeIndex = vulkanDevice.getMemoryType(memReqs.memoryTypeBits, VkMemoryPropertyFlags.HostVisible | VkMemoryPropertyFlags.HostCoherent); Util.CheckResult(vkAllocateMemory(device, &memAllocInfo, null, &stagingMemory)); Util.CheckResult(vkBindBufferMemory(device, stagingBuffer, stagingMemory, 0)); // Copy texture data into staging buffer byte* data; Util.CheckResult(vkMapMemory(device, stagingMemory, 0, memReqs.size, 0, (void**)&data)); byte[] allTextureData = texCube.GetAllTextureData(); fixed (byte* texCubeDataPtr = &allTextureData[0]) { Unsafe.CopyBlock(data, texCubeDataPtr, (uint)allTextureData.Length); } vkUnmapMemory(device, stagingMemory); // Create optimal tiled target image VkImageCreateInfo imageCreateInfo = Initializers.imageCreateInfo(); imageCreateInfo.imageType = VkImageType.Image2D; imageCreateInfo.format = format; imageCreateInfo.mipLevels = cubeMap.mipLevels; imageCreateInfo.samples = VkSampleCountFlags.Count1; imageCreateInfo.tiling = VkImageTiling.Optimal; imageCreateInfo.usage = VkImageUsageFlags.Sampled; imageCreateInfo.sharingMode = VkSharingMode.Exclusive; imageCreateInfo.initialLayout = VkImageLayout.Undefined; imageCreateInfo.extent = new VkExtent3D { width = cubeMap.width, height = cubeMap.height, depth = 1 }; imageCreateInfo.usage = VkImageUsageFlags.TransferDst | VkImageUsageFlags.Sampled; // Cube faces count as array layers in Vulkan imageCreateInfo.arrayLayers = 6; // This flag is required for cube map images imageCreateInfo.flags = VkImageCreateFlags.CubeCompatible; Util.CheckResult(vkCreateImage(device, &imageCreateInfo, null, out cubeMap.image)); vkGetImageMemoryRequirements(device, cubeMap.image, &memReqs); memAllocInfo.allocationSize = memReqs.size; memAllocInfo.memoryTypeIndex = vulkanDevice.getMemoryType(memReqs.memoryTypeBits, VkMemoryPropertyFlags.DeviceLocal); Util.CheckResult(vkAllocateMemory(device, &memAllocInfo, null, out cubeMap.deviceMemory)); Util.CheckResult(vkBindImageMemory(device, cubeMap.image, cubeMap.deviceMemory, 0)); VkCommandBuffer copyCmd = createCommandBuffer(VkCommandBufferLevel.Primary, true); // Setup buffer copy regions for each face including all of it's miplevels NativeList<VkBufferImageCopy> bufferCopyRegions = new NativeList<VkBufferImageCopy>(); uint offset = 0; for (uint face = 0; face < 6; face++) { for (uint level = 0; level < cubeMap.mipLevels; level++) { VkBufferImageCopy bufferCopyRegion = new VkBufferImageCopy(); bufferCopyRegion.imageSubresource.aspectMask = VkImageAspectFlags.Color; bufferCopyRegion.imageSubresource.mipLevel = level; bufferCopyRegion.imageSubresource.baseArrayLayer = face; bufferCopyRegion.imageSubresource.layerCount = 1; bufferCopyRegion.imageExtent.width = texCube.Faces[face].Mipmaps[level].Width; bufferCopyRegion.imageExtent.height = texCube.Faces[face].Mipmaps[level].Height; bufferCopyRegion.imageExtent.depth = 1; bufferCopyRegion.bufferOffset = offset; bufferCopyRegions.Add(bufferCopyRegion); // Increase offset into staging buffer for next level / face offset += texCube.Faces[face].Mipmaps[level].SizeInBytes; } } // Image barrier for optimal image (target) // Set initial layout for all array layers (faces) of the optimal (target) tiled texture VkImageSubresourceRange subresourceRange = new VkImageSubresourceRange(); subresourceRange.aspectMask = VkImageAspectFlags.Color; subresourceRange.baseMipLevel = 0; subresourceRange.levelCount = cubeMap.mipLevels; subresourceRange.layerCount = 6; Tools.setImageLayout( copyCmd, cubeMap.image, VkImageAspectFlags.Color, VkImageLayout.Undefined, VkImageLayout.TransferDstOptimal, subresourceRange); // Copy the cube map faces from the staging buffer to the optimal tiled image vkCmdCopyBufferToImage( copyCmd, stagingBuffer, cubeMap.image, VkImageLayout.TransferDstOptimal, bufferCopyRegions.Count, bufferCopyRegions.Data); // Change texture image layout to shader read after all faces have been copied cubeMap.imageLayout = VkImageLayout.ShaderReadOnlyOptimal; Tools.setImageLayout( copyCmd, cubeMap.image, VkImageAspectFlags.Color, VkImageLayout.TransferDstOptimal, cubeMap.imageLayout, subresourceRange); flushCommandBuffer(copyCmd, queue, true); // Create sampler VkSamplerCreateInfo sampler = Initializers.samplerCreateInfo(); sampler.magFilter = VkFilter.Linear; sampler.minFilter = VkFilter.Linear; sampler.mipmapMode = VkSamplerMipmapMode.Linear; sampler.addressModeU = VkSamplerAddressMode.ClampToEdge; sampler.addressModeV = sampler.addressModeU; sampler.addressModeW = sampler.addressModeU; sampler.mipLodBias = 0.0f; sampler.compareOp = VkCompareOp.Never; sampler.minLod = 0.0f; sampler.maxLod = cubeMap.mipLevels; sampler.borderColor = VkBorderColor.FloatOpaqueWhite; sampler.maxAnisotropy = 1.0f; if (vulkanDevice.features.samplerAnisotropy == 1) { sampler.maxAnisotropy = vulkanDevice.properties.limits.maxSamplerAnisotropy; sampler.anisotropyEnable = True; } Util.CheckResult(vkCreateSampler(device, &sampler, null, out cubeMap.sampler)); // Create image view VkImageViewCreateInfo view = Initializers.imageViewCreateInfo(); // Cube map view type view.viewType = VkImageViewType.ImageCube; view.format = format; view.components = new VkComponentMapping { r = VkComponentSwizzle.R, g = VkComponentSwizzle.G, b = VkComponentSwizzle.B, a = VkComponentSwizzle.A }; view.subresourceRange = new VkImageSubresourceRange { aspectMask = VkImageAspectFlags.Color, baseMipLevel = 0, layerCount = 1, baseArrayLayer = 0, levelCount = 1 }; // 6 array layers (faces) view.subresourceRange.layerCount = 6; // Set number of mip levels view.subresourceRange.levelCount = cubeMap.mipLevels; view.image = cubeMap.image; Util.CheckResult(vkCreateImageView(device, &view, null, out cubeMap.view)); // Clean up staging resources vkFreeMemory(device, stagingMemory, null); vkDestroyBuffer(device, stagingBuffer, null); }
void loadTexture(string fileName, VkFormat format, bool forceLinearTiling) { KtxFile tex2D; using (var fs = File.OpenRead(fileName)) { tex2D = KtxFile.Load(fs, false); } VkFormatProperties formatProperties; texture.width = tex2D.Header.PixelWidth; texture.height = tex2D.Header.PixelHeight; texture.mipLevels = tex2D.Header.NumberOfMipmapLevels; // Get Device properites for the requested texture format vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties); // Only use linear tiling if requested (and supported by the Device) // Support for linear tiling is mostly limited, so prefer to use // optimal tiling instead // On most implementations linear tiling will only support a very // limited amount of formats and features (mip maps, cubemaps, arrays, etc.) uint useStaging = 1; // Only use linear tiling if forced if (forceLinearTiling) { // Don't use linear if format is not supported for (linear) shader sampling useStaging = ((formatProperties.linearTilingFeatures & VkFormatFeatureFlags.SampledImage) != VkFormatFeatureFlags.SampledImage) ? 1u : 0u; } VkMemoryAllocateInfo memAllocInfo = Initializers.memoryAllocateInfo(); VkMemoryRequirements memReqs = new VkMemoryRequirements(); if (useStaging == 1) { // Create a host-visible staging buffer that contains the raw image data VkBuffer stagingBuffer; VkDeviceMemory stagingMemory; VkBufferCreateInfo bufferCreateInfo = Initializers.bufferCreateInfo(); bufferCreateInfo.size = tex2D.GetTotalSize(); // This buffer is used as a transfer source for the buffer copy bufferCreateInfo.usage = VkBufferUsageFlags.TransferSrc; bufferCreateInfo.sharingMode = VkSharingMode.Exclusive; Util.CheckResult(vkCreateBuffer(device, &bufferCreateInfo, null, &stagingBuffer)); // Get memory requirements for the staging buffer (alignment, memory type bits) vkGetBufferMemoryRequirements(device, stagingBuffer, &memReqs); memAllocInfo.allocationSize = memReqs.size; // Get memory type index for a host visible buffer memAllocInfo.memoryTypeIndex = vulkanDevice.getMemoryType(memReqs.memoryTypeBits, VkMemoryPropertyFlags.HostVisible | VkMemoryPropertyFlags.HostCoherent); Util.CheckResult(vkAllocateMemory(device, &memAllocInfo, null, &stagingMemory)); Util.CheckResult(vkBindBufferMemory(device, stagingBuffer, stagingMemory, 0)); // Copy texture data into staging buffer byte *data; Util.CheckResult(vkMapMemory(device, stagingMemory, 0, memReqs.size, 0, (void **)&data)); byte[] allData = tex2D.GetAllTextureData(); fixed(byte *tex2DDataPtr = &allData[0]) { Unsafe.CopyBlock(data, tex2DDataPtr, (uint)allData.Length); } vkUnmapMemory(device, stagingMemory); // Setup buffer copy regions for each mip level NativeList <VkBufferImageCopy> bufferCopyRegions = new NativeList <VkBufferImageCopy>(); uint offset = 0; for (uint i = 0; i < texture.mipLevels; i++) { VkBufferImageCopy bufferCopyRegion = new VkBufferImageCopy(); bufferCopyRegion.imageSubresource.aspectMask = VkImageAspectFlags.Color; bufferCopyRegion.imageSubresource.mipLevel = i; bufferCopyRegion.imageSubresource.baseArrayLayer = 0; bufferCopyRegion.imageSubresource.layerCount = 1; bufferCopyRegion.imageExtent.width = tex2D.Faces[0].Mipmaps[i].Width; bufferCopyRegion.imageExtent.height = tex2D.Faces[0].Mipmaps[i].Height; bufferCopyRegion.imageExtent.depth = 1; bufferCopyRegion.bufferOffset = offset; bufferCopyRegions.Add(bufferCopyRegion); offset += tex2D.Faces[0].Mipmaps[i].SizeInBytes; } // Create optimal tiled target image VkImageCreateInfo imageCreateInfo = Initializers.imageCreateInfo(); imageCreateInfo.imageType = VkImageType.Image2D; imageCreateInfo.format = format; imageCreateInfo.mipLevels = texture.mipLevels; imageCreateInfo.arrayLayers = 1; imageCreateInfo.samples = VkSampleCountFlags.Count1; imageCreateInfo.tiling = VkImageTiling.Optimal; imageCreateInfo.sharingMode = VkSharingMode.Exclusive; // Set initial layout of the image to undefined imageCreateInfo.initialLayout = VkImageLayout.Undefined; imageCreateInfo.extent = new VkExtent3D { width = texture.width, height = texture.height, depth = 1 }; imageCreateInfo.usage = VkImageUsageFlags.TransferDst | VkImageUsageFlags.Sampled; Util.CheckResult(vkCreateImage(device, &imageCreateInfo, null, out texture.image)); vkGetImageMemoryRequirements(device, texture.image, &memReqs); memAllocInfo.allocationSize = memReqs.size; memAllocInfo.memoryTypeIndex = vulkanDevice.getMemoryType(memReqs.memoryTypeBits, VkMemoryPropertyFlags.DeviceLocal); Util.CheckResult(vkAllocateMemory(device, &memAllocInfo, null, out texture.DeviceMemory)); Util.CheckResult(vkBindImageMemory(device, texture.image, texture.DeviceMemory, 0)); VkCommandBuffer copyCmd = base.createCommandBuffer(VkCommandBufferLevel.Primary, true); // Image barrier for optimal image // The sub resource range describes the regions of the image we will be transition VkImageSubresourceRange subresourceRange = new VkImageSubresourceRange(); // Image only contains color data subresourceRange.aspectMask = VkImageAspectFlags.Color; // Start at first mip level subresourceRange.baseMipLevel = 0; // We will transition on all mip levels subresourceRange.levelCount = texture.mipLevels; // The 2D texture only has one layer subresourceRange.layerCount = 1; // Optimal image will be used as destination for the copy, so we must transfer from our // initial undefined image layout to the transfer destination layout setImageLayout( copyCmd, texture.image, VkImageAspectFlags.Color, VkImageLayout.Undefined, VkImageLayout.TransferDstOptimal, subresourceRange); // Copy mip levels from staging buffer vkCmdCopyBufferToImage( copyCmd, stagingBuffer, texture.image, VkImageLayout.TransferDstOptimal, bufferCopyRegions.Count, bufferCopyRegions.Data); // Change texture image layout to shader read after all mip levels have been copied texture.imageLayout = VkImageLayout.ShaderReadOnlyOptimal; setImageLayout( copyCmd, texture.image, VkImageAspectFlags.Color, VkImageLayout.TransferDstOptimal, texture.imageLayout, subresourceRange); flushCommandBuffer(copyCmd, queue, true); // Clean up staging resources vkFreeMemory(device, stagingMemory, null); vkDestroyBuffer(device, stagingBuffer, null); } else { throw new NotImplementedException(); /* * // Prefer using optimal tiling, as linear tiling * // may support only a small set of features * // depending on implementation (e.g. no mip maps, only one layer, etc.) * * VkImage mappableImage; * VkDeviceMemory mappableMemory; * * // Load mip map level 0 to linear tiling image * VkImageCreateInfo imageCreateInfo = Initializers.imageCreateInfo(); * imageCreateInfo.imageType = VkImageType._2d; * imageCreateInfo.format = format; * imageCreateInfo.mipLevels = 1; * imageCreateInfo.arrayLayers = 1; * imageCreateInfo.samples = VkSampleCountFlags._1; * imageCreateInfo.tiling = VkImageTiling.Linear; * imageCreateInfo.usage = VkImageUsageFlags.Sampled; * imageCreateInfo.sharingMode = VkSharingMode.Exclusive; * imageCreateInfo.initialLayout = VkImageLayout.Preinitialized; * imageCreateInfo.extent = new VkExtent3D { width = texture.width, height = texture.height, depth = 1 }; * Util.CheckResult(vkCreateImage(Device, &imageCreateInfo, null, &mappableImage)); * * // Get memory requirements for this image * // like size and alignment * vkGetImageMemoryRequirements(Device, mappableImage, &memReqs); * // Set memory allocation size to required memory size * memAllocInfo.allocationSize = memReqs.size; * * // Get memory type that can be mapped to host memory * memAllocInfo.memoryTypeIndex = VulkanDevice.GetMemoryType(memReqs.memoryTypeBits, VkMemoryPropertyFlags.HostVisible | VkMemoryPropertyFlags.HostCoherent); * * // Allocate host memory * Util.CheckResult(vkAllocateMemory(Device, &memAllocInfo, null, &mappableMemory)); * * // Bind allocated image for use * Util.CheckResult(vkBindImageMemory(Device, mappableImage, mappableMemory, 0)); * * // Get sub resource layout * // Mip map count, array layer, etc. * VkImageSubresource subRes = new VkImageSubresource(); * subRes.aspectMask = VkImageAspectFlags.Color; * * VkSubresourceLayout subResLayout; * void* data; * * // Get sub resources layout * // Includes row pitch, size offsets, etc. * vkGetImageSubresourceLayout(Device, mappableImage, &subRes, &subResLayout); * * // Map image memory * Util.CheckResult(vkMapMemory(Device, mappableMemory, 0, memReqs.size, 0, &data)); * * // Copy image data into memory * memcpy(data, tex2D[subRes.mipLevel].data(), tex2D[subRes.mipLevel].size()); * * vkUnmapMemory(Device, mappableMemory); * * // Linear tiled images don't need to be staged * // and can be directly used as textures * texture.image = mappableImage; * texture.DeviceMemory = mappableMemory; * texture.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; * * VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); * * // Setup image memory barrier transfer image to shader read layout * * // The sub resource range describes the regions of the image we will be transition * VkImageSubresourceRange subresourceRange = { }; * // Image only contains color data * subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; * // Start at first mip level * subresourceRange.baseMipLevel = 0; * // Only one mip level, most implementations won't support more for linear tiled images * subresourceRange.levelCount = 1; * // The 2D texture only has one layer * subresourceRange.layerCount = 1; * * setImageLayout( * copyCmd, * texture.image, * VK_IMAGE_ASPECT_COLOR_BIT, * VK_IMAGE_LAYOUT_PREINITIALIZED, * texture.imageLayout, * subresourceRange); * * VulkanExampleBase::flushCommandBuffer(copyCmd, queue, true); */ } // Create sampler // In Vulkan textures are accessed by samplers // This separates all the sampling information from the // texture data // This means you could have multiple sampler objects // for the same texture with different settings // Similar to the samplers available with OpenGL 3.3 VkSamplerCreateInfo sampler = Initializers.samplerCreateInfo(); sampler.magFilter = VkFilter.Linear; sampler.minFilter = VkFilter.Linear; sampler.mipmapMode = VkSamplerMipmapMode.Linear; sampler.addressModeU = VkSamplerAddressMode.Repeat; sampler.addressModeV = VkSamplerAddressMode.Repeat; sampler.addressModeW = VkSamplerAddressMode.Repeat; sampler.mipLodBias = 0.0f; sampler.compareOp = VkCompareOp.Never; sampler.minLod = 0.0f; // Set max level-of-detail to mip level count of the texture sampler.maxLod = (useStaging == 1) ? (float)texture.mipLevels : 0.0f; // Enable anisotropic filtering // This feature is optional, so we must check if it's supported on the Device if (vulkanDevice.features.samplerAnisotropy == 1) { // Use max. level of anisotropy for this example sampler.maxAnisotropy = vulkanDevice.properties.limits.maxSamplerAnisotropy; sampler.anisotropyEnable = True; } else { // The Device does not support anisotropic filtering sampler.maxAnisotropy = 1.0f; sampler.anisotropyEnable = False; } sampler.borderColor = VkBorderColor.FloatOpaqueWhite; Util.CheckResult(vkCreateSampler(device, ref sampler, null, out texture.sampler)); // Create image view // Textures are not directly accessed by the shaders and // are abstracted by image views containing additional // information and sub resource ranges VkImageViewCreateInfo view = Initializers.imageViewCreateInfo(); view.viewType = VkImageViewType.Image2D; view.format = format; view.components = new VkComponentMapping { r = VkComponentSwizzle.R, g = VkComponentSwizzle.G, b = VkComponentSwizzle.B, a = VkComponentSwizzle.A }; // The subresource range describes the set of mip levels (and array layers) that can be accessed through this image view // It's possible to create multiple image views for a single image referring to different (and/or overlapping) ranges of the image view.subresourceRange.aspectMask = VkImageAspectFlags.Color; view.subresourceRange.baseMipLevel = 0; view.subresourceRange.baseArrayLayer = 0; view.subresourceRange.layerCount = 1; // Linear tiling usually won't support mip maps // Only set mip map count if optimal tiling is used view.subresourceRange.levelCount = (useStaging == 1) ? texture.mipLevels : 1; // The view will be based on the texture's image view.image = texture.image; Util.CheckResult(vkCreateImageView(device, &view, null, out texture.view)); }
// Setup the offscreen framebuffer for rendering the blurred scene // The color attachment of this framebuffer will then be used to sample frame in the fragment shader of the final pass void prepareOffscreen() { offscreenPass.width = FB_DIM; offscreenPass.height = FB_DIM; // Find a suitable depth format VkFormat fbDepthFormat; VkBool32 validDepthFormat = Tools.getSupportedDepthFormat(physicalDevice, &fbDepthFormat); Debug.Assert(validDepthFormat); // Color attachment VkImageCreateInfo image = Initializers.imageCreateInfo(); image.imageType = VK_IMAGE_TYPE_2D; image.format = FB_COLOR_FORMAT; image.extent.width = (uint)offscreenPass.width; image.extent.height = (uint)offscreenPass.height; image.extent.depth = 1; image.mipLevels = 1; image.arrayLayers = 1; image.samples = VK_SAMPLE_COUNT_1_BIT; image.tiling = VK_IMAGE_TILING_OPTIMAL; // We will sample directly from the color attachment image.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; VkMemoryAllocateInfo memAlloc = Initializers.memoryAllocateInfo(); VkMemoryRequirements memReqs; Util.CheckResult(vkCreateImage(device, &image, null, out offscreenPass.color.image)); vkGetImageMemoryRequirements(device, offscreenPass.color.image, &memReqs); memAlloc.allocationSize = memReqs.size; memAlloc.memoryTypeIndex = vulkanDevice.getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); Util.CheckResult(vkAllocateMemory(device, &memAlloc, null, out offscreenPass.color.mem)); Util.CheckResult(vkBindImageMemory(device, offscreenPass.color.image, offscreenPass.color.mem, 0)); VkImageViewCreateInfo colorImageView = Initializers.imageViewCreateInfo(); colorImageView.viewType = VK_IMAGE_VIEW_TYPE_2D; colorImageView.format = FB_COLOR_FORMAT; colorImageView.subresourceRange = new VkImageSubresourceRange(); colorImageView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; colorImageView.subresourceRange.baseMipLevel = 0; colorImageView.subresourceRange.levelCount = 1; colorImageView.subresourceRange.baseArrayLayer = 0; colorImageView.subresourceRange.layerCount = 1; colorImageView.image = offscreenPass.color.image; Util.CheckResult(vkCreateImageView(device, &colorImageView, null, out offscreenPass.color.view)); // Create sampler to sample from the attachment in the fragment shader VkSamplerCreateInfo samplerInfo = Initializers.samplerCreateInfo(); samplerInfo.magFilter = VK_FILTER_LINEAR; samplerInfo.minFilter = VK_FILTER_LINEAR; samplerInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; samplerInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; samplerInfo.addressModeV = samplerInfo.addressModeU; samplerInfo.addressModeW = samplerInfo.addressModeU; samplerInfo.mipLodBias = 0.0f; samplerInfo.maxAnisotropy = 0; samplerInfo.minLod = 0.0f; samplerInfo.maxLod = 1.0f; samplerInfo.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; Util.CheckResult(vkCreateSampler(device, &samplerInfo, null, out offscreenPass.sampler)); // Depth stencil attachment image.format = fbDepthFormat; image.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT; Util.CheckResult(vkCreateImage(device, &image, null, out offscreenPass.depth.image)); vkGetImageMemoryRequirements(device, offscreenPass.depth.image, &memReqs); memAlloc.allocationSize = memReqs.size; memAlloc.memoryTypeIndex = vulkanDevice.getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); Util.CheckResult(vkAllocateMemory(device, &memAlloc, null, out offscreenPass.depth.mem)); Util.CheckResult(vkBindImageMemory(device, offscreenPass.depth.image, offscreenPass.depth.mem, 0)); VkImageViewCreateInfo depthStencilView = Initializers.imageViewCreateInfo(); depthStencilView.viewType = VK_IMAGE_VIEW_TYPE_2D; depthStencilView.format = fbDepthFormat; depthStencilView.flags = 0; depthStencilView.subresourceRange = new VkImageSubresourceRange(); depthStencilView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT; depthStencilView.subresourceRange.baseMipLevel = 0; depthStencilView.subresourceRange.levelCount = 1; depthStencilView.subresourceRange.baseArrayLayer = 0; depthStencilView.subresourceRange.layerCount = 1; depthStencilView.image = offscreenPass.depth.image; Util.CheckResult(vkCreateImageView(device, &depthStencilView, null, out offscreenPass.depth.view)); // Create a separate render pass for the offscreen rendering as it may differ from the one used for scene rendering FixedArray2 <VkAttachmentDescription> attchmentDescriptions = new FixedArray2 <VkAttachmentDescription>(); // Color attachment attchmentDescriptions.First.format = FB_COLOR_FORMAT; attchmentDescriptions.First.samples = VK_SAMPLE_COUNT_1_BIT; attchmentDescriptions.First.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; attchmentDescriptions.First.storeOp = VK_ATTACHMENT_STORE_OP_STORE; attchmentDescriptions.First.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attchmentDescriptions.First.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attchmentDescriptions.First.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; attchmentDescriptions.First.finalLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; // Depth attachment attchmentDescriptions.Second.format = fbDepthFormat; attchmentDescriptions.Second.samples = VK_SAMPLE_COUNT_1_BIT; attchmentDescriptions.Second.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; attchmentDescriptions.Second.storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attchmentDescriptions.Second.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attchmentDescriptions.Second.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attchmentDescriptions.Second.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; attchmentDescriptions.Second.finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; VkAttachmentReference colorReference = new VkAttachmentReference { attachment = 0, layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL }; VkAttachmentReference depthReference = new VkAttachmentReference { attachment = 1, layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL }; VkSubpassDescription subpassDescription = new VkSubpassDescription(); subpassDescription.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpassDescription.colorAttachmentCount = 1; subpassDescription.pColorAttachments = &colorReference; subpassDescription.pDepthStencilAttachment = &depthReference; // Use subpass dependencies for layout transitions FixedArray2 <VkSubpassDependency> dependencies = new FixedArray2 <VkSubpassDependency>(); dependencies.First.srcSubpass = VK_SUBPASS_EXTERNAL; dependencies.First.dstSubpass = 0; dependencies.First.srcStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT; dependencies.First.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependencies.First.srcAccessMask = VK_ACCESS_MEMORY_READ_BIT; dependencies.First.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; dependencies.First.dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT; dependencies.Second.srcSubpass = 0; dependencies.Second.dstSubpass = VK_SUBPASS_EXTERNAL; dependencies.Second.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependencies.Second.dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT; dependencies.Second.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; dependencies.Second.dstAccessMask = VK_ACCESS_MEMORY_READ_BIT; dependencies.Second.dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT; // Create the actual renderpass VkRenderPassCreateInfo renderPassInfo = VkRenderPassCreateInfo.New(); renderPassInfo.attachmentCount = attchmentDescriptions.Count; renderPassInfo.pAttachments = &attchmentDescriptions.First; renderPassInfo.subpassCount = 1; renderPassInfo.pSubpasses = &subpassDescription; renderPassInfo.dependencyCount = dependencies.Count; renderPassInfo.pDependencies = &dependencies.First; Util.CheckResult(vkCreateRenderPass(device, &renderPassInfo, null, out offscreenPass.renderPass)); FixedArray2 <VkImageView> attachments = new FixedArray2 <VkImageView>(offscreenPass.color.view, offscreenPass.depth.view); VkFramebufferCreateInfo fbufCreateInfo = Initializers.framebufferCreateInfo(); fbufCreateInfo.renderPass = offscreenPass.renderPass; fbufCreateInfo.attachmentCount = 2; fbufCreateInfo.pAttachments = &attachments.First; fbufCreateInfo.width = (uint)offscreenPass.width; fbufCreateInfo.height = (uint)offscreenPass.height; fbufCreateInfo.layers = 1; Util.CheckResult(vkCreateFramebuffer(device, &fbufCreateInfo, null, out offscreenPass.frameBuffer)); // Fill a descriptor for later use in a descriptor set offscreenPass.descriptor.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; offscreenPass.descriptor.imageView = offscreenPass.color.view; offscreenPass.descriptor.sampler = offscreenPass.sampler; }
void loadTextureArray(string filename, VkFormat format) { KtxFile tex2DArray; using (var fs = File.OpenRead(filename)) { tex2DArray = KtxFile.Load(fs, false); } textureArray.width = tex2DArray.Header.PixelWidth; textureArray.height = tex2DArray.Header.PixelHeight; layerCount = tex2DArray.Header.NumberOfArrayElements; VkMemoryAllocateInfo memAllocInfo = Initializers.memoryAllocateInfo(); VkMemoryRequirements memReqs; // Create a host-visible staging buffer that contains the raw image data VkBuffer stagingBuffer; VkDeviceMemory stagingMemory; VkBufferCreateInfo bufferCreateInfo = Initializers.bufferCreateInfo(); bufferCreateInfo.size = tex2DArray.GetTotalSize(); // This buffer is used as a transfer source for the buffer copy bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; Util.CheckResult(vkCreateBuffer(device, &bufferCreateInfo, null, &stagingBuffer)); // Get memory requirements for the staging buffer (alignment, memory type bits) vkGetBufferMemoryRequirements(device, stagingBuffer, &memReqs); memAllocInfo.allocationSize = memReqs.size; // Get memory type index for a host visible buffer memAllocInfo.memoryTypeIndex = vulkanDevice.getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); Util.CheckResult(vkAllocateMemory(device, &memAllocInfo, null, &stagingMemory)); Util.CheckResult(vkBindBufferMemory(device, stagingBuffer, stagingMemory, 0)); // Copy texture data into staging buffer byte *data; Util.CheckResult(vkMapMemory(device, stagingMemory, 0, memReqs.size, 0, (void **)&data)); byte[] allTextureData = tex2DArray.GetAllTextureData(); fixed(byte *texPtr = allTextureData) { Unsafe.CopyBlock(data, texPtr, (uint)allTextureData.Length); } vkUnmapMemory(device, stagingMemory); // Setup buffer copy regions for array layers NativeList <VkBufferImageCopy> bufferCopyRegions; IntPtr offset = IntPtr.Zero; for (uint layer = 0; layer < layerCount; layer++) { VkBufferImageCopy bufferCopyRegion = new VkBufferImageCopy(); bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; bufferCopyRegion.imageSubresource.mipLevel = 0; bufferCopyRegion.imageSubresource.baseArrayLayer = layer; bufferCopyRegion.imageSubresource.layerCount = 1; bufferCopyRegion.imageExtent.width = (uint)(tex2DArray[layer][0].extent().x); bufferCopyRegion.imageExtent.height = (uint)(tex2DArray[layer][0].extent().y); bufferCopyRegion.imageExtent.depth = 1; bufferCopyRegion.bufferOffset = offset; bufferCopyRegions.push_back(bufferCopyRegion); // Increase offset into staging buffer for next level / face offset += tex2DArray[layer][0].Count; } // Create optimal tiled target image VkImageCreateInfo imageCreateInfo = Initializers.imageCreateInfo(); imageCreateInfo.imageType = VK_IMAGE_TYPE_2D; imageCreateInfo.format = format; imageCreateInfo.mipLevels = 1; imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT; imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; imageCreateInfo.extent = new { textureArray.width, textureArray.height, 1 }; imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; imageCreateInfo.arrayLayers = layerCount; Util.CheckResult(vkCreateImage(device, &imageCreateInfo, null, &textureArray.image)); vkGetImageMemoryRequirements(device, textureArray.image, &memReqs); memAllocInfo.allocationSize = memReqs.size; memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); Util.CheckResult(vkAllocateMemory(device, &memAllocInfo, null, &textureArray.deviceMemory)); Util.CheckResult(vkBindImageMemory(device, textureArray.image, textureArray.deviceMemory, 0)); VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); // Image barrier for optimal image (target) // Set initial layout for all array layers (faces) of the optimal (target) tiled texture VkImageSubresourceRange subresourceRange = { }; subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; subresourceRange.baseMipLevel = 0; subresourceRange.levelCount = 1; subresourceRange.layerCount = layerCount; vkstools::setImageLayout( copyCmd, textureArray.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, subresourceRange); // Copy the cube map faces from the staging buffer to the optimal tiled image vkCmdCopyBufferToImage( copyCmd, stagingBuffer, textureArray.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, bufferCopyRegions.Count, bufferCopyRegions.Data ); // Change texture image layout to shader read after all faces have been copied textureArray.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; vkstools::setImageLayout( copyCmd, textureArray.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, textureArray.imageLayout, subresourceRange); VulkanExampleBase::flushCommandBuffer(copyCmd, queue, true); // Create sampler VkSamplerCreateInfo sampler = Initializers.samplerCreateInfo(); sampler.magFilter = VK_FILTER_LINEAR; sampler.minFilter = VK_FILTER_LINEAR; sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; sampler.addressModeV = sampler.addressModeU; sampler.addressModeW = sampler.addressModeU; sampler.mipLodBias = 0.0f; sampler.maxAnisotropy = 8; sampler.compareOp = VK_COMPARE_OP_NEVER; sampler.minLod = 0.0f; sampler.maxLod = 0.0f; sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; Util.CheckResult(vkCreateSampler(device, &sampler, null, &textureArray.sampler)); // Create image view VkImageViewCreateInfo view = Initializers.imageViewCreateInfo(); view.viewType = VK_IMAGE_VIEW_TYPE_2D_ARRAY; view.format = format; view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };