internal NodeInternal splitNode(RTree rTree, ref Rectangle r, NodeBase childNode) { // [Pick first entry for each group] Apply algorithm pickSeeds to // choose two entries to be the first elements of the groups. Assign // each to a group. // debug code /*double initialArea = 0; * if (log.isDebugEnabled()) * { * double unionMinX = Math.Min(n.mbrMinX, newRectMinX); * double unionMinY = Math.Min(n.mbrMinY, newRectMinY); * double unionMaxX = Math.Max(n.mbrMaxX, newRectMaxX); * double unionMaxY = Math.Max(n.mbrMaxY, newRectMaxY); * * initialArea = (unionMaxX - unionMinX) * (unionMaxY - unionMinY); * }*/ System.Array.Copy(rTree.initialEntryStatus, 0, rTree.entryStatus, 0, rTree.maxNodeEntries); NodeInternal newNode = null; newNode = new NodeInternal(level, rTree.maxNodeEntries); Update(); pickSeeds(rTree, ref r, newNode, childNode); // this also sets the entryCount to 1 // [Check if done] If all entries have been assigned, stop. If one group has so few entries that all the rest must be assigned to it in // order for it to have the minimum number m, assign them and stop. while (entryCount + newNode.entryCount < rTree.maxNodeEntries + 1) { if (rTree.maxNodeEntries + 1 - newNode.entryCount == rTree.minNodeEntries) { // assign all remaining entries to original node for (int i = 0; i < rTree.maxNodeEntries; i++) { if (rTree.entryStatus[i] == ((byte)RTree.EntryStatus.unassigned)) { rTree.entryStatus[i] = ((byte)RTree.EntryStatus.assigned); if (entries[i].Value.MinX < minimumBoundingRectangle.MinX) { minimumBoundingRectangle.MinX = entries[i].Value.MinX; } if (entries[i].Value.MinY < minimumBoundingRectangle.MinY) { minimumBoundingRectangle.MinY = entries[i].Value.MinY; } if (entries[i].Value.MaxX > minimumBoundingRectangle.MaxX) { minimumBoundingRectangle.MaxX = entries[i].Value.MaxX; } if (entries[i].Value.MaxY > minimumBoundingRectangle.MaxY) { minimumBoundingRectangle.MaxY = entries[i].Value.MaxY; } entryCount++; } } break; } if (rTree.maxNodeEntries + 1 - entryCount == rTree.minNodeEntries) { // assign all remaining entries to new node for (int i = 0; i < rTree.maxNodeEntries; i++) { if (rTree.entryStatus[i] == ((byte)RTree.EntryStatus.unassigned)) { rTree.entryStatus[i] = ((byte)RTree.EntryStatus.assigned); Rectangle entriesR = entries[i].Value; newNode.addEntry(ref entriesR, childNodes[i]); entries[i] = null; childNodes[i] = null; } } break; } // [Select entry to assign] Invoke algorithm pickNext to choose the next entry to assign. Add it to the group whose covering rectangle // will have to be enlarged least to accommodate it. Resolve ties by adding the entry to the group with smaller area, then to the // the one with fewer entries, then to either. Repeat from S2 pickNext(rTree, newNode); } reorganize(rTree); // check that the MBR stored for each node is correct. #if RtreeCheck if (!minimumBoundingRectangle.Equals(calculateMBR())) { throw new UnexpectedException("Error: splitNode old node MBR wrong"); } if (!newNode.minimumBoundingRectangle.Equals(newNode.calculateMBR())) { throw new UnexpectedException("Error: splitNode new node MBR wrong"); } #endif #if RtreeCheck double newArea = minimumBoundingRectangle.Area + newNode.minimumBoundingRectangle.Area; double percentageIncrease = (100 * (newArea - initialArea)) / initialArea; Console.WriteLine("Node " + this + " split. New area increased by " + percentageIncrease + "%"); #endif return(newNode); }
private void pickSeeds(RTree rTree, ref Rectangle r, NodeInternal newNode, NodeBase childNode) { // Find extreme rectangles along all dimension. Along each dimension, find the entry whose rectangle has the highest low side, and the one // with the lowest high side. Record the separation. double maxNormalizedSeparation = -1; // initialize to -1 so that even overlapping rectangles will be considered for the seeds int highestLowIndex = -1; int lowestHighIndex = -1; Update(); // for the purposes of picking seeds, take the MBR of the node to include the new rectangle aswell. if (r.MinX < minimumBoundingRectangle.MinX) { minimumBoundingRectangle.MinX = r.MinX; } if (r.MinY < minimumBoundingRectangle.MinY) { minimumBoundingRectangle.MinY = r.MinY; } if (r.MaxX > minimumBoundingRectangle.MaxX) { minimumBoundingRectangle.MaxX = r.MaxX; } if (r.MaxY > minimumBoundingRectangle.MaxY) { minimumBoundingRectangle.MaxY = r.MaxY; } double mbrLenX = minimumBoundingRectangle.MaxX - minimumBoundingRectangle.MinX; double mbrLenY = minimumBoundingRectangle.MaxY - minimumBoundingRectangle.MinY; #if RtreeCheck Console.WriteLine("pickSeeds(): NodeI = " + this); #endif double tempHighestLow = r.MinX; int tempHighestLowIndex = -1; // -1 indicates the new rectangle is the seed double tempLowestHigh = r.MaxX; int tempLowestHighIndex = -1; // -1 indicates the new rectangle is the seed for (int i = 0; i < entryCount; i++) { double tempLow = entries[i].Value.MinX; if (tempLow >= tempHighestLow) { tempHighestLow = tempLow; tempHighestLowIndex = i; } // ensure that the same index cannot be both lowestHigh and highestLow else { double tempHigh = entries[i].Value.MaxX; if (tempHigh <= tempLowestHigh) { tempLowestHigh = tempHigh; tempLowestHighIndex = i; } } // PS2 [Adjust for shape of the rectangle cluster] Normalize the separations by dividing by the widths of the entire set along the corresponding dimension double normalizedSeparation = mbrLenX == 0 ? 1 : (tempHighestLow - tempLowestHigh) / mbrLenX; if (normalizedSeparation > 1 || normalizedSeparation < -1) { Console.WriteLine("Invalid normalized separation X"); } #if RtreeCheck Console.WriteLine("Entry " + i + ", dimension X: HighestLow = " + tempHighestLow + " (index " + tempHighestLowIndex + ")" + ", LowestHigh = " + tempLowestHigh + " (index " + tempLowestHighIndex + ", NormalizedSeparation = " + normalizedSeparation); #endif // PS3 [Select the most extreme pair] Choose the pair with the greatest normalized separation along any dimension. // Note that if negative it means the rectangles overlapped. However still include overlapping rectangles if that is the only choice available. if (normalizedSeparation >= maxNormalizedSeparation) { highestLowIndex = tempHighestLowIndex; lowestHighIndex = tempLowestHighIndex; maxNormalizedSeparation = normalizedSeparation; } } // Repeat for the Y dimension tempHighestLow = r.MinY; tempHighestLowIndex = -1; // -1 indicates the new rectangle is the seed tempLowestHigh = r.MaxY; tempLowestHighIndex = -1; // -1 indicates the new rectangle is the seed for (int i = 0; i < entryCount; i++) { double tempLow = entries[i].Value.MinY; if (tempLow >= tempHighestLow) { tempHighestLow = tempLow; tempHighestLowIndex = i; } // ensure that the same index cannot be both lowestHigh and highestLow else { double tempHigh = entries[i].Value.MaxY; if (tempHigh <= tempLowestHigh) { tempLowestHigh = tempHigh; tempLowestHighIndex = i; } } // PS2 [Adjust for shape of the rectangle cluster] Normalize the separations by dividing by the widths of the entire set along the corresponding dimension double normalizedSeparation = mbrLenY == 0 ? 1 : (tempHighestLow - tempLowestHigh) / mbrLenY; if (normalizedSeparation > 1 || normalizedSeparation < -1) { throw new UnexpectedException("Invalid normalized separation Y"); } #if RtreeCheck Console.WriteLine("Entry " + i + ", dimension Y: HighestLow = " + tempHighestLow + " (index " + tempHighestLowIndex + ")" + ", LowestHigh = " + tempLowestHigh + " (index " + tempLowestHighIndex + ", NormalizedSeparation = " + normalizedSeparation); #endif // PS3 [Select the most extreme pair] Choose the pair with the greatest normalized separation along any dimension. // Note that if negative it means the rectangles overlapped. However still include overlapping rectangles if that is the only choice available. if (normalizedSeparation >= maxNormalizedSeparation) { highestLowIndex = tempHighestLowIndex; lowestHighIndex = tempLowestHighIndex; maxNormalizedSeparation = normalizedSeparation; } } // At this point it is possible that the new rectangle is both highestLow and lowestHigh. This can happen if all rectangles in the node overlap the new rectangle. // Resolve this by declaring that the highestLowIndex is the lowest Y and, the lowestHighIndex is the largest X (but always a different rectangle) if (highestLowIndex == lowestHighIndex) { highestLowIndex = -1; double tempMinY = r.MinY; lowestHighIndex = 0; double tempMaxX = entries[0].Value.MaxX; for (int i = 1; i < entryCount; i++) { if (entries[i].Value.MinY < tempMinY) { tempMinY = entries[i].Value.MinY; highestLowIndex = i; } else if (entries[i].Value.MaxX > tempMaxX) { tempMaxX = entries[i].Value.MaxX; lowestHighIndex = i; } } } // highestLowIndex is the seed for the new node. if (highestLowIndex == -1) { newNode.addEntry(ref r, childNode); } else { Rectangle entriesR = entries[highestLowIndex].Value; newNode.addEntry(ref entriesR, childNodes[highestLowIndex]); entries[highestLowIndex] = r; // move the new rectangle into the space vacated by the seed for the new node childNodes[highestLowIndex] = childNode; } // lowestHighIndex is the seed for the original node. if (lowestHighIndex == -1) { lowestHighIndex = highestLowIndex; } rTree.entryStatus[lowestHighIndex] = ((byte)RTree.EntryStatus.assigned); entryCount = 1; minimumBoundingRectangle = entries[lowestHighIndex].Value; }
private PriorityQueueRTree createNearestNDistanceQueue(Point p, UInt32 count, double furthestDistance) { PriorityQueueRTree distanceQueue = new PriorityQueueRTree(); // return immediately if given an invalid "count" parameter if (count == 0) { return(distanceQueue); } parents.Clear(); parents.Push(rootNode); parentsEntry.Clear(); parentsEntry.Push(-1); // TODO: possible shortcut here - could test for intersection with the MBR of the root node. If no intersection, return immediately. double furthestDistanceSq = furthestDistance * furthestDistance; while (parents.Count > 0) { NodeBase n = parents.Peek(); int startIndex = parentsEntry.Peek() + 1; if (!n.IsLeaf) { // go through every entry in the index node to check if it could contain an entry closer than the farthest entry currently stored. bool near = false; NodeInternal nodeInternal = n as NodeInternal; for (int i = startIndex; i < n.entryCount; i++) { if (n.entries[i].Value.distanceSq(p.x, p.y) <= furthestDistanceSq) { parents.Push(nodeInternal.childNodes[i]); parentsEntry.Pop(); parentsEntry.Push(i); // this becomes the start index when the child has been searched parentsEntry.Push(-1); near = true; break; // ie go to next iteration of while() } } if (near) { continue; } } else { // go through every entry in the leaf to check if it is currently one of the nearest N entries. for (int i = 0; i < n.entryCount; i++) { double entryDistanceSq = n.entries[i].Value.distanceSq(p.x, p.y); if (entryDistanceSq <= furthestDistanceSq) { distanceQueue.Insert(n.entries[i].Value, entryDistanceSq); while (distanceQueue.Count > count) { // normal case - we can simply remove the lowest priority (highest distance) entry Rectangle value = distanceQueue.ValuePeek; double distanceSq = distanceQueue.PriorityPeek; distanceQueue.Pop(); // rare case - multiple items of the same priority (distance) if (distanceSq == distanceQueue.PriorityPeek) { savedValues.Add(value); savedPriority = distanceSq; } else { savedValues.Clear(); } } // if the saved values have the same distance as the next one in the tree, add them back in. if (savedValues.Count > 0 && savedPriority == distanceQueue.PriorityPeek) { for (int svi = 0; svi < savedValues.Count; svi++) { distanceQueue.Insert(savedValues[svi], savedPriority); } savedValues.Clear(); } // narrow the search, if we have already found N items if (distanceQueue.PriorityPeek < furthestDistanceSq && distanceQueue.Count >= count) { furthestDistanceSq = distanceQueue.PriorityPeek; } } } } parents.Pop(); parentsEntry.Pop(); } return(distanceQueue); }
private bool checkConsistency(NodeBase n, int expectedLevel, Rectangle?expectedMBR) { // go through the tree, and check that the internal data structures of the tree are not corrupted. if (n == null) { throw new UnexpectedException($"Error: Could not read node {this}"); } // if tree is empty, then there should be exactly one node, at level 1 // TODO: also check the MBR is as for a new node if (n == rootNode && Count == 0) { if (n.level != 1) { throw new UnexpectedException("Error: tree is empty but root node is not at level 1"); } } if (n.level != expectedLevel) { throw new UnexpectedException("Error: Node " + this + ", expected level " + expectedLevel + ", actual level " + n.level); } Rectangle calculatedMBR = n.calculateMinimumBoundingRectangle(); Rectangle actualMBR = n.minimumBoundingRectangle; if (!actualMBR.Equals(calculatedMBR)) { if (actualMBR.MinX != n.minimumBoundingRectangle.MinX) { throw new UnexpectedException($" actualMinX={actualMBR.MinX}, calc={calculatedMBR.MinX}"); } if (actualMBR.MinY != n.minimumBoundingRectangle.MinY) { throw new UnexpectedException($" actualMinY={actualMBR.MinY}, calc={calculatedMBR.MinY}"); } if (actualMBR.MaxX != n.minimumBoundingRectangle.MaxX) { throw new UnexpectedException($" actualMaxX={actualMBR.MaxX}, calc={calculatedMBR.MaxX}"); } if (actualMBR.MaxY != n.minimumBoundingRectangle.MaxY) { throw new UnexpectedException($" actualMaxY={actualMBR.MaxY}, calc={calculatedMBR.MaxY}"); } throw new UnexpectedException("Error: Node " + this + ", calculated MBR does not equal stored MBR"); } if (expectedMBR != null && !actualMBR.Equals(expectedMBR)) { throw new UnexpectedException("Error: Node " + this + ", expected MBR (from parent) does not equal stored MBR"); } for (int i = 0; i < n.entryCount; i++) { if (n.level > 1) // if not a leaf { NodeInternal nodeInternal = n as NodeInternal; if (nodeInternal.childNodes[i] == null) { throw new UnexpectedException("Error: Node " + this + ", Entry " + i + " is null"); } if (!checkConsistency(nodeInternal.childNodes[i], n.level - 1, n.entries[i])) { return(false); } } } return(true); }
/// <summary> /// Removes a rectangle from the Rtree /// </summary> /// <param name="r">the rectangle to delete</param> /// <returns>true if rectangle deleted otherwise false</returns> public bool Remove(Rectangle r) { // FindLeaf algorithm inlined here. Note the "official" algorithm searches all overlapping entries. This seems inefficient, // as an entry is only worth searching if it contains (NOT overlaps) the rectangle we are searching for. // FL1 [Search subtrees] If root is not a leaf, check each entry to determine if it contains r. For each entry found, invoke // findLeaf on the node pointed to by the entry, until r is found or all entries have been checked. parents.Clear(); parents.Push(rootNode); parentsEntry.Clear(); parentsEntry.Push(-1); NodeBase n = null; int foundIndex = -1; // index of entry to be deleted in leaf while (foundIndex == -1 && parents.Count > 0) { n = parents.Peek(); int startIndex = parentsEntry.Peek() + 1; if (!n.IsLeaf) { NodeInternal internalNode = n as NodeInternal; bool Contains = false; for (int i = startIndex; i < n.entryCount; i++) { if (n.entries[i].Value.Contains(r)) { parents.Push(internalNode.childNodes[i]); parentsEntry.Pop(); parentsEntry.Push(i); // this becomes the start index when the child has been searched parentsEntry.Push(-1); Contains = true; break; // ie go to next iteration of while() } } if (Contains) { continue; } } else { NodeLeaf leaf = n as NodeLeaf; foundIndex = leaf.findEntry(ref r); } parents.Pop(); parentsEntry.Pop(); } // while not found if (foundIndex != -1) { NodeLeaf leaf = n as NodeLeaf; leaf.deleteEntry(foundIndex); leaf.condenseTree(this); size--; } // shrink the tree if possible (i.e. if root node has exactly one entry, and that entry is not a leaf node, delete the root (it's entry becomes the new root) NodeBase root = rootNode; while (root.entryCount == 1 && treeHeight > 1) { NodeInternal rootInternal = root as NodeInternal; root.entryCount = 0; rootNode = rootInternal.childNodes[0]; treeHeight--; } // if the tree is now empty, then set the MBR of the root node back to it's original state (this is only needed when the tree is empty, // as this is the only state where an empty node is not eliminated) if (size == 0) { rootNode.minimumBoundingRectangle = new Rectangle(true); } #if RtreeCheck checkConsistency(); #endif return(foundIndex != -1); }