// Schedule all the jobs for the simulation step. // Enqueued callbacks can choose to inject additional jobs at defined sync points. // multiThreaded defines which simulation type will be called: // - true will result in default multithreaded simulation // - false will result in a very small number of jobs (1 per physics step phase) that are scheduled sequentially // Behavior doesn't change regardless of the multiThreaded argument provided. public unsafe SimulationJobHandles ScheduleStepJobs(SimulationStepInput input, SimulationCallbacks callbacksIn, JobHandle inputDeps, bool multiThreaded = true) { SafetyChecks.CheckFiniteAndPositiveAndThrow(input.TimeStep, nameof(input.TimeStep)); SafetyChecks.CheckInRangeAndThrow(input.NumSolverIterations, new int2(1, int.MaxValue), nameof(input.NumSolverIterations)); // Dispose and reallocate input velocity buffer, if dynamic body count has increased. // Dispose previous collision and trigger event data streams. // New event streams are reallocated later when the work item count is known. JobHandle handle = SimulationContext.ScheduleReset(input, inputDeps, false); SimulationContext.TimeStep = input.TimeStep; StepContext = new StepContext(); if (input.World.NumDynamicBodies == 0) { // No need to do anything, since nothing can move m_StepHandles = new SimulationJobHandles(handle); return(m_StepHandles); } SimulationCallbacks callbacks = callbacksIn ?? new SimulationCallbacks(); // Find all body pairs that overlap in the broadphase var handles = input.World.CollisionWorld.ScheduleFindOverlapsJobs( out NativeStream dynamicVsDynamicBodyPairs, out NativeStream dynamicVsStaticBodyPairs, handle, multiThreaded); handle = handles.FinalExecutionHandle; var disposeHandle1 = handles.FinalDisposeHandle; var postOverlapsHandle = handle; // Sort all overlapping and jointed body pairs into phases handles = m_Scheduler.ScheduleCreatePhasedDispatchPairsJob( ref input.World, ref dynamicVsDynamicBodyPairs, ref dynamicVsStaticBodyPairs, handle, ref StepContext.PhasedDispatchPairs, out StepContext.SolverSchedulerInfo, multiThreaded); handle = handles.FinalExecutionHandle; var disposeHandle2 = handles.FinalDisposeHandle; // Apply gravity and copy input velocities at this point (in parallel with the scheduler, but before the callbacks) var applyGravityAndCopyInputVelocitiesHandle = Solver.ScheduleApplyGravityAndCopyInputVelocitiesJob( input.World.DynamicsWorld.MotionVelocities, SimulationContext.InputVelocities, input.TimeStep * input.Gravity, multiThreaded ? postOverlapsHandle : handle, multiThreaded); handle = JobHandle.CombineDependencies(handle, applyGravityAndCopyInputVelocitiesHandle); handle = callbacks.Execute(SimulationCallbacks.Phase.PostCreateDispatchPairs, this, ref input.World, handle); // Create contact points & joint Jacobians handles = NarrowPhase.ScheduleCreateContactsJobs(ref input.World, input.TimeStep, ref StepContext.Contacts, ref StepContext.Jacobians, ref StepContext.PhasedDispatchPairs, handle, ref StepContext.SolverSchedulerInfo, multiThreaded); handle = handles.FinalExecutionHandle; var disposeHandle3 = handles.FinalDisposeHandle; handle = callbacks.Execute(SimulationCallbacks.Phase.PostCreateContacts, this, ref input.World, handle); // Create contact Jacobians handles = Solver.ScheduleBuildJacobiansJobs(ref input.World, input.TimeStep, input.Gravity, input.NumSolverIterations, handle, ref StepContext.PhasedDispatchPairs, ref StepContext.SolverSchedulerInfo, ref StepContext.Contacts, ref StepContext.Jacobians, multiThreaded); handle = handles.FinalExecutionHandle; var disposeHandle4 = handles.FinalDisposeHandle; handle = callbacks.Execute(SimulationCallbacks.Phase.PostCreateContactJacobians, this, ref input.World, handle); // Solve all Jacobians Solver.StabilizationData solverStabilizationData = new Solver.StabilizationData(input, SimulationContext); handles = Solver.ScheduleSolveJacobiansJobs(ref input.World.DynamicsWorld, input.TimeStep, input.NumSolverIterations, ref StepContext.Jacobians, ref SimulationContext.CollisionEventDataStream, ref SimulationContext.TriggerEventDataStream, ref StepContext.SolverSchedulerInfo, solverStabilizationData, handle, multiThreaded); handle = handles.FinalExecutionHandle; var disposeHandle5 = handles.FinalDisposeHandle; handle = callbacks.Execute(SimulationCallbacks.Phase.PostSolveJacobians, this, ref input.World, handle); // Integrate motions handle = Integrator.ScheduleIntegrateJobs(ref input.World.DynamicsWorld, input.TimeStep, handle, multiThreaded); // Synchronize the collision world if (input.SynchronizeCollisionWorld) { handle = input.World.CollisionWorld.ScheduleUpdateDynamicTree(ref input.World, input.TimeStep, input.Gravity, handle, multiThreaded); // TODO: timeStep = 0? } // Return the final simulation handle m_StepHandles.FinalExecutionHandle = handle; // Different dispose logic for single threaded simulation compared to "standard" threading (multi threaded) if (!multiThreaded) { handle = dynamicVsDynamicBodyPairs.Dispose(handle); handle = dynamicVsStaticBodyPairs.Dispose(handle); handle = StepContext.PhasedDispatchPairs.Dispose(handle); handle = StepContext.Contacts.Dispose(handle); handle = StepContext.Jacobians.Dispose(handle); handle = StepContext.SolverSchedulerInfo.ScheduleDisposeJob(handle); m_StepHandles.FinalDisposeHandle = handle; } else { // Return the final handle, which includes disposing temporary arrays JobHandle *deps = stackalloc JobHandle[5] { disposeHandle1, disposeHandle2, disposeHandle3, disposeHandle4, disposeHandle5 }; m_StepHandles.FinalDisposeHandle = JobHandleUnsafeUtility.CombineDependencies(deps, 5); } return(m_StepHandles); }
public unsafe SimulationJobHandles ScheduleStepJobs(SimulationStepInput input, SimulationCallbacks callbacksIn, JobHandle inputDeps, int threadCountHint = 0) { return(ScheduleStepJobs(input, callbacksIn, inputDeps, threadCountHint > 0)); }