예제 #1
0
        public static PackedLightData ToPackedLightData(LightData data)
        {
            PackedLightData outData = default(PackedLightData);

            outData.packedData1   = data.positionRWS;
            outData.packedData1.w = (float)data.lightLayers + Epsilon; //防止1,转换为float变成0.999999999998;

            outData.packedData2   = data.forward;
            outData.packedData2.w = data.lightDimmer;

            outData.packedData3   = data.right;
            outData.packedData3.w = data.volumetricLightDimmer;

            outData.packedData4   = data.up;
            outData.packedData4.w = data.angleScale;

            outData.packedData5   = data.color;
            outData.packedData5.w = data.angleOffset;

            outData.packedData6 = data.shadowMaskSelector;

            outData.packedData7.x = (float)(int)data.lightType + Epsilon; //防止1,转换为float变成0.999999999998;
            outData.packedData7.y = data.range;
            outData.packedData7.z = data.rangeAttenuationScale;
            outData.packedData7.w = data.rangeAttenuationBias;

            outData.packedData8.x = (float)data.cookieIndex + Epsilon;        //防止1,转换为float变成0.999999999998;
            outData.packedData8.y = (float)data.tileCookie + Epsilon;         //防止1,转换为float变成0.999999999998;
            outData.packedData8.z = (float)data.shadowIndex + Epsilon;        //防止1,转换为float变成0.999999999998;
            outData.packedData8.w = (float)data.contactShadowIndex + Epsilon; //防止1,转换为float变成0.999999999998;

            outData.packedData9.x = data.shadowDimmer;
            outData.packedData9.y = data.volumetricShadowDimmer;
            outData.packedData9.z = (float)data.nonLightMappedOnly + Epsilon; //防止1,转换为float变成0.999999999998;
            outData.packedData9.w = data.minRoughness;

            outData.packedData10   = data.size;
            outData.packedData10.z = data.diffuseDimmer;
            outData.packedData10.w = data.specularDimmer;

            //not use
            outData.packedData11 = Vector4.zero;
            outData.packedData12 = Vector4.zero;
            outData.packedData13 = Vector4.zero;
            outData.packedData14 = Vector4.zero;

            return(outData);
        }
예제 #2
0
        public static LightData UnPackedLightDataToLightData(PackedLightData data)
        {
            LightData outData = default(LightData);

            outData.positionRWS = data.packedData1;
            outData.lightLayers = (uint)data.packedData1.w;

            outData.forward     = data.packedData2;
            outData.lightDimmer = data.packedData2.w;

            outData.right = data.packedData3;
            outData.volumetricLightDimmer = data.packedData3.w;

            outData.up         = data.packedData4;
            outData.angleScale = data.packedData4.w;

            outData.color       = data.packedData5;
            outData.angleOffset = data.packedData5.w;

            outData.shadowMaskSelector = data.packedData6;

            outData.lightType             = (GPULightType)(int)data.packedData7.x;
            outData.range                 = data.packedData7.y;
            outData.rangeAttenuationScale = data.packedData7.z;
            outData.rangeAttenuationBias  = data.packedData7.w;

            outData.cookieIndex        = (int)data.packedData8.x;
            outData.tileCookie         = (int)data.packedData8.y;
            outData.shadowIndex        = (int)data.packedData8.z;
            outData.contactShadowIndex = (int)data.packedData8.w;

            outData.shadowDimmer           = data.packedData9.x;
            outData.volumetricShadowDimmer = data.packedData9.y;
            outData.nonLightMappedOnly     = (int)data.packedData9.z;
            outData.minRoughness           = data.packedData9.w;

            outData.size           = data.packedData10;
            outData.diffuseDimmer  = data.packedData10.z;
            outData.specularDimmer = data.packedData10.w;

            return(outData);
        }
예제 #3
0
        void BuildLightData(CommandBuffer cmd, HDCamera hdCamera, List <HDAdditionalLightData> lightArray)
        {
            // Also we need to build the light list data
            if (m_LightDataGPUArray == null || m_LightDataGPUArray.count != lightArray.Count)
            {
                ResizeLightDataBuffer(lightArray.Count);
            }

            // Build the data for every light
            for (int lightIdx = 0; lightIdx < lightArray.Count; ++lightIdx)
            {
                var lightData = new LightData();

                HDAdditionalLightData additionalLightData = lightArray[lightIdx];
                // When the user deletes a light source in the editor, there is a single frame where the light is null before the collection of light in the scene is triggered
                // the workaround for this is simply to add an invalid light for that frame
                if (additionalLightData == null)
                {
                    m_LightDataCPUArray[lightIdx] = lightData;
                    continue;
                }
                Light light = additionalLightData.gameObject.GetComponent <Light>();

                // Both of these positions are non-camera-relative.
                float distanceToCamera  = (light.gameObject.transform.position - hdCamera.camera.transform.position).magnitude;
                float lightDistanceFade = HDUtils.ComputeLinearDistanceFade(distanceToCamera, additionalLightData.fadeDistance);

                bool contributesToLighting = ((additionalLightData.lightDimmer > 0) && (additionalLightData.affectDiffuse || additionalLightData.affectSpecular)) || (additionalLightData.volumetricDimmer > 0);
                contributesToLighting = contributesToLighting && (lightDistanceFade > 0);

                if (!contributesToLighting)
                {
                    continue;
                }

                lightData.lightLayers = additionalLightData.GetLightLayers();
                LightCategory lightCategory = LightCategory.Count;
                GPULightType  gpuLightType  = GPULightType.Point;
                GetLightGPUType(additionalLightData, light, ref gpuLightType, ref lightCategory);

                lightData.lightType = gpuLightType;

                lightData.positionRWS = light.gameObject.transform.position - hdCamera.camera.transform.position;

                bool applyRangeAttenuation = additionalLightData.applyRangeAttenuation && (gpuLightType != GPULightType.ProjectorBox);

                lightData.range = light.range;

                if (applyRangeAttenuation)
                {
                    lightData.rangeAttenuationScale = 1.0f / (light.range * light.range);
                    lightData.rangeAttenuationBias  = 1.0f;

                    if (lightData.lightType == GPULightType.Rectangle)
                    {
                        // Rect lights are currently a special case because they use the normalized
                        // [0, 1] attenuation range rather than the regular [0, r] one.
                        lightData.rangeAttenuationScale = 1.0f;
                    }
                }
                else // Don't apply any attenuation but do a 'step' at range
                {
                    // Solve f(x) = b - (a * x)^2 where x = (d/r)^2.
                    // f(0) = huge -> b = huge.
                    // f(1) = 0    -> huge - a^2 = 0 -> a = sqrt(huge).
                    const float hugeValue = 16777216.0f;
                    const float sqrtHuge  = 4096.0f;
                    lightData.rangeAttenuationScale = sqrtHuge / (light.range * light.range);
                    lightData.rangeAttenuationBias  = hugeValue;

                    if (lightData.lightType == GPULightType.Rectangle)
                    {
                        // Rect lights are currently a special case because they use the normalized
                        // [0, 1] attenuation range rather than the regular [0, r] one.
                        lightData.rangeAttenuationScale = sqrtHuge;
                    }
                }

                Color value = light.color.linear * light.intensity;
                if (additionalLightData.useColorTemperature)
                {
                    value *= Mathf.CorrelatedColorTemperatureToRGB(light.colorTemperature);
                }
                lightData.color = new Vector3(value.r, value.g, value.b);

                lightData.forward = light.transform.forward;
                lightData.up      = light.transform.up;
                lightData.right   = light.transform.right;

                if (lightData.lightType == GPULightType.ProjectorBox)
                {
                    // Rescale for cookies and windowing.
                    lightData.right *= 2.0f / Mathf.Max(additionalLightData.shapeWidth, 0.001f);
                    lightData.up    *= 2.0f / Mathf.Max(additionalLightData.shapeHeight, 0.001f);
                }
                else if (lightData.lightType == GPULightType.ProjectorPyramid)
                {
                    // Get width and height for the current frustum
                    var spotAngle = light.spotAngle;

                    float frustumWidth, frustumHeight;

                    if (additionalLightData.aspectRatio >= 1.0f)
                    {
                        frustumHeight = 2.0f * Mathf.Tan(spotAngle * 0.5f * Mathf.Deg2Rad);
                        frustumWidth  = frustumHeight * additionalLightData.aspectRatio;
                    }
                    else
                    {
                        frustumWidth  = 2.0f * Mathf.Tan(spotAngle * 0.5f * Mathf.Deg2Rad);
                        frustumHeight = frustumWidth / additionalLightData.aspectRatio;
                    }

                    // Rescale for cookies and windowing.
                    lightData.right *= 2.0f / frustumWidth;
                    lightData.up    *= 2.0f / frustumHeight;
                }

                if (lightData.lightType == GPULightType.Spot)
                {
                    var spotAngle = light.spotAngle;

                    var innerConePercent      = additionalLightData.GetInnerSpotPercent01();
                    var cosSpotOuterHalfAngle = Mathf.Clamp(Mathf.Cos(spotAngle * 0.5f * Mathf.Deg2Rad), 0.0f, 1.0f);
                    var sinSpotOuterHalfAngle = Mathf.Sqrt(1.0f - cosSpotOuterHalfAngle * cosSpotOuterHalfAngle);
                    var cosSpotInnerHalfAngle = Mathf.Clamp(Mathf.Cos(spotAngle * 0.5f * innerConePercent * Mathf.Deg2Rad), 0.0f, 1.0f); // inner cone

                    var val = Mathf.Max(0.0001f, (cosSpotInnerHalfAngle - cosSpotOuterHalfAngle));
                    lightData.angleScale  = 1.0f / val;
                    lightData.angleOffset = -cosSpotOuterHalfAngle * lightData.angleScale;

                    // Rescale for cookies and windowing.
                    float cotOuterHalfAngle = cosSpotOuterHalfAngle / sinSpotOuterHalfAngle;
                    lightData.up    *= cotOuterHalfAngle;
                    lightData.right *= cotOuterHalfAngle;
                }
                else
                {
                    // These are the neutral values allowing GetAngleAnttenuation in shader code to return 1.0
                    lightData.angleScale  = 0.0f;
                    lightData.angleOffset = 1.0f;
                }

                if (lightData.lightType != GPULightType.Directional && lightData.lightType != GPULightType.ProjectorBox)
                {
                    // Store the squared radius of the light to simulate a fill light.
                    lightData.size = new Vector2(additionalLightData.shapeRadius * additionalLightData.shapeRadius, 0);
                }

                if (lightData.lightType == GPULightType.Rectangle || lightData.lightType == GPULightType.Tube)
                {
                    lightData.size = new Vector2(additionalLightData.shapeWidth, additionalLightData.shapeHeight);
                }

                lightData.lightDimmer           = lightDistanceFade * (additionalLightData.lightDimmer);
                lightData.diffuseDimmer         = lightDistanceFade * (additionalLightData.affectDiffuse ? additionalLightData.lightDimmer : 0);
                lightData.specularDimmer        = lightDistanceFade * (additionalLightData.affectSpecular ? additionalLightData.lightDimmer * hdCamera.frameSettings.specularGlobalDimmer : 0);
                lightData.volumetricLightDimmer = lightDistanceFade * (additionalLightData.volumetricDimmer);

                lightData.contactShadowIndex       = -1;
                lightData.cookieIndex              = -1;
                lightData.shadowIndex              = -1;
                lightData.rayTracedAreaShadowIndex = -1;

                if (light != null && light.cookie != null)
                {
                    // TODO: add texture atlas support for cookie textures.
                    switch (light.type)
                    {
                    case LightType.Spot:
                        lightData.cookieIndex = m_LightLoop.cookieTexArray.FetchSlice(cmd, light.cookie);
                        break;

                    case LightType.Point:
                        lightData.cookieIndex = m_LightLoop.cubeCookieTexArray.FetchSlice(cmd, light.cookie);
                        break;
                    }
                }
                else if (light.type == LightType.Spot && additionalLightData.spotLightShape != SpotLightShape.Cone)
                {
                    // Projectors lights must always have a cookie texture.
                    // As long as the cache is a texture array and not an atlas, the 4x4 white texture will be rescaled to 128
                    lightData.cookieIndex = m_LightLoop.cookieTexArray.FetchSlice(cmd, Texture2D.whiteTexture);
                }
                else if (lightData.lightType == GPULightType.Rectangle && additionalLightData.areaLightCookie != null)
                {
                    lightData.cookieIndex = m_LightLoop.areaLightCookieManager.FetchSlice(cmd, additionalLightData.areaLightCookie);
                }

                {
                    lightData.shadowDimmer           = 1.0f;
                    lightData.volumetricShadowDimmer = 1.0f;
                }

                {
                    // fix up shadow information
                    lightData.shadowIndex = additionalLightData.shadowIndex;
                }

                // Value of max smoothness is from artists point of view, need to convert from perceptual smoothness to roughness
                lightData.minRoughness = (1.0f - additionalLightData.maxSmoothness) * (1.0f - additionalLightData.maxSmoothness);

                // No usage for the shadow masks
                lightData.shadowMaskSelector = Vector4.zero;
                {
                    // use -1 to say that we don't use shadow mask
                    lightData.shadowMaskSelector.x = -1.0f;
                    lightData.nonLightMappedOnly   = 0;
                }

                // Set the data for this light
                m_LightDataCPUArray[lightIdx] = lightData;
            }

            //Push the data to the GPU
            m_LightDataGPUArray.SetData(m_LightDataCPUArray);
        }
예제 #4
0
        public bool RenderAreaShadows(HDCamera hdCamera, CommandBuffer cmd, ScriptableRenderContext renderContext, uint frameCount)
        {
            // NOTE: Here we cannot clear the area shadow texture because it is a texture array. So we need to bind it and make sure no material will try to read it in the shaders
            BindShadowTexture(cmd);

            // Let's check all the resources and states to see if we should render the effect
            HDRaytracingEnvironment rtEnvironement = m_RaytracingManager.CurrentEnvironment();

            RaytracingShader shadowRaytrace = m_PipelineAsset.renderPipelineResources.shaders.areaShadowsRaytracingRT;
            ComputeShader    shadowsCompute = m_PipelineAsset.renderPipelineResources.shaders.areaShadowRaytracingCS;
            ComputeShader    shadowFilter   = m_PipelineAsset.renderPipelineResources.shaders.areaShadowFilterCS;

            // Make sure everything is valid
            bool invalidState = rtEnvironement == null || rtEnvironement.raytracedShadows == false ||
                                hdCamera.frameSettings.litShaderMode != LitShaderMode.Deferred ||
                                shadowRaytrace == null || shadowsCompute == null || shadowFilter == null ||
                                m_PipelineResources.textures.owenScrambledTex == null || m_PipelineResources.textures.scramblingTex == null;

            // If invalid state or ray-tracing acceleration structure, we stop right away
            if (invalidState)
            {
                return(false);
            }

            // Grab the TAA history buffers (SN/UN and Analytic value)
            RTHandleSystem.RTHandle areaShadowHistoryArray = hdCamera.GetCurrentFrameRT((int)HDCameraFrameHistoryType.RaytracedAreaShadow)
                                                             ?? hdCamera.AllocHistoryFrameRT((int)HDCameraFrameHistoryType.RaytracedAreaShadow, AreaShadowHistoryBufferAllocatorFunction, 1);
            RTHandleSystem.RTHandle areaAnalyticHistoryArray = hdCamera.GetCurrentFrameRT((int)HDCameraFrameHistoryType.RaytracedAreaAnalytic)
                                                               ?? hdCamera.AllocHistoryFrameRT((int)HDCameraFrameHistoryType.RaytracedAreaAnalytic, AreaAnalyticHistoryBufferAllocatorFunction, 1);

            // Grab the acceleration structure for the target camera
            RaytracingAccelerationStructure accelerationStructure = m_RaytracingManager.RequestAccelerationStructure(rtEnvironement.shadowLayerMask);

            // Define the shader pass to use for the reflection pass
            cmd.SetRaytracingShaderPass(shadowRaytrace, "VisibilityDXR");

            // Set the acceleration structure for the pass
            cmd.SetRaytracingAccelerationStructure(shadowRaytrace, HDShaderIDs._RaytracingAccelerationStructureName, accelerationStructure);

            // Inject the ray-tracing sampling data
            cmd.SetGlobalTexture(HDShaderIDs._OwenScrambledTexture, m_PipelineResources.textures.owenScrambledTex);
            cmd.SetGlobalTexture(HDShaderIDs._ScramblingTexture, m_PipelineResources.textures.scramblingTex);

            int frameIndex = hdCamera.IsTAAEnabled() ? hdCamera.taaFrameIndex : (int)frameCount % 8;

            cmd.SetGlobalInt(HDShaderIDs._RaytracingFrameIndex, frameIndex);

            // Grab the Filtering Kernels
            int copyTAAHistoryKernel  = shadowFilter.FindKernel("AreaShadowCopyTAAHistory");
            int applyTAAKernel        = shadowFilter.FindKernel("AreaShadowApplyTAA");
            int updateAnalyticHistory = shadowFilter.FindKernel("AreaAnalyticHistoryUpdate");
            int estimateNoiseKernel   = shadowFilter.FindKernel("AreaShadowEstimateNoise");
            int firstDenoiseKernel    = shadowFilter.FindKernel("AreaShadowDenoiseFirstPass");
            int secondDenoiseKernel   = shadowFilter.FindKernel("AreaShadowDenoiseSecondPass");

            // Texture dimensions
            int texWidth  = hdCamera.actualWidth;
            int texHeight = hdCamera.actualHeight;

            // Evaluate the dispatch parameters
            int areaTileSize = 8;
            int numTilesX    = (texWidth + (areaTileSize - 1)) / areaTileSize;
            int numTilesY    = (texHeight + (areaTileSize - 1)) / areaTileSize;

            // Inject the ray generation data
            cmd.SetGlobalFloat(HDShaderIDs._RaytracingRayBias, rtEnvironement.rayBias);

            int numLights = m_LightLoop.m_lightList.lights.Count;

            for (int lightIdx = 0; lightIdx < numLights; ++lightIdx)
            {
                // If this is not a rectangular area light or it won't have shadows, skip it
                if (m_LightLoop.m_lightList.lights[lightIdx].lightType != GPULightType.Rectangle || m_LightLoop.m_lightList.lights[lightIdx].rayTracedAreaShadowIndex == -1)
                {
                    continue;
                }
                using (new ProfilingSample(cmd, "Raytrace Area Shadow", CustomSamplerId.RaytracingShadowIntegration.GetSampler()))
                {
                    LightData currentLight = m_LightLoop.m_lightList.lights[lightIdx];

                    // We need to build the world to area light matrix
                    worldToLocalArea.SetColumn(0, currentLight.right);
                    worldToLocalArea.SetColumn(1, currentLight.up);
                    worldToLocalArea.SetColumn(2, currentLight.forward);

                    // Compensate the  relative rendering if active
                    Vector3 lightPositionWS = currentLight.positionRWS;
                    if (ShaderConfig.s_CameraRelativeRendering != 0)
                    {
                        lightPositionWS += hdCamera.camera.transform.position;
                    }
                    worldToLocalArea.SetColumn(3, lightPositionWS);
                    worldToLocalArea.m33 = 1.0f;
                    worldToLocalArea     = worldToLocalArea.inverse;

                    // We have noticed from extensive profiling that ray-trace shaders are not as effective for running per-pixel computation. In order to reduce that,
                    // we do a first prepass that compute the analytic term and probability and generates the first integration sample
                    if (rtEnvironement.splitIntegration)
                    {
                        int shadowComputeKernel = shadowsCompute.FindKernel("RaytracingAreaShadowPrepass");

                        // This pass evaluates the analytic value and the generates and outputs the first sample
                        cmd.SetComputeBufferParam(shadowsCompute, shadowComputeKernel, HDShaderIDs._LightDatas, m_LightLoop.lightDatas);
                        cmd.SetComputeIntParam(shadowsCompute, HDShaderIDs._RaytracingTargetAreaLight, lightIdx);
                        cmd.SetComputeIntParam(shadowsCompute, HDShaderIDs._RaytracingNumSamples, rtEnvironement.shadowNumSamples);
                        cmd.SetComputeMatrixParam(shadowsCompute, HDShaderIDs._RaytracingAreaWorldToLocal, worldToLocalArea);
                        cmd.SetComputeTextureParam(shadowsCompute, shadowComputeKernel, HDShaderIDs._DepthTexture, m_SharedRTManager.GetDepthStencilBuffer());
                        cmd.SetComputeTextureParam(shadowsCompute, shadowComputeKernel, HDShaderIDs._NormalBufferTexture, m_SharedRTManager.GetNormalBuffer());
                        cmd.SetComputeTextureParam(shadowsCompute, shadowComputeKernel, HDShaderIDs._GBufferTexture[0], m_GbufferManager.GetBuffer(0));
                        cmd.SetComputeTextureParam(shadowsCompute, shadowComputeKernel, HDShaderIDs._GBufferTexture[1], m_GbufferManager.GetBuffer(1));
                        cmd.SetComputeTextureParam(shadowsCompute, shadowComputeKernel, HDShaderIDs._GBufferTexture[2], m_GbufferManager.GetBuffer(2));
                        cmd.SetComputeTextureParam(shadowsCompute, shadowComputeKernel, HDShaderIDs._GBufferTexture[3], m_GbufferManager.GetBuffer(3));
                        cmd.SetComputeTextureParam(shadowsCompute, shadowComputeKernel, HDShaderIDs._AreaCookieTextures, m_LightLoop.areaLightCookieManager.GetTexCache());
                        cmd.SetComputeTextureParam(shadowsCompute, shadowComputeKernel, HDShaderIDs._RaytracedAreaShadowIntegration, m_DenoiseBuffer0);
                        cmd.SetComputeTextureParam(shadowsCompute, shadowComputeKernel, HDShaderIDs._RaytracedAreaShadowSample, m_DenoiseBuffer1);
                        cmd.SetComputeTextureParam(shadowsCompute, shadowComputeKernel, HDShaderIDs._RaytracingDirectionBuffer, m_RaytracingDirectionBuffer);
                        cmd.SetComputeTextureParam(shadowsCompute, shadowComputeKernel, HDShaderIDs._RaytracingDistanceBuffer, m_RaytracingDistanceBuffer);
                        cmd.SetComputeTextureParam(shadowsCompute, shadowComputeKernel, HDShaderIDs._AnalyticProbBuffer, m_AnalyticProbBuffer);
                        cmd.DispatchCompute(shadowsCompute, shadowComputeKernel, numTilesX, numTilesY, 1);

                        // This pass will use the previously generated sample and add it to the integration buffer
                        cmd.SetRaytracingBufferParam(shadowRaytrace, m_RayGenShadowSingleName, HDShaderIDs._LightDatas, m_LightLoop.lightDatas);
                        cmd.SetRaytracingTextureParam(shadowRaytrace, m_RayGenShadowSingleName, HDShaderIDs._DepthTexture, m_SharedRTManager.GetDepthStencilBuffer());
                        cmd.SetRaytracingTextureParam(shadowRaytrace, m_RayGenShadowSingleName, HDShaderIDs._RaytracedAreaShadowSample, m_DenoiseBuffer1);
                        cmd.SetRaytracingTextureParam(shadowRaytrace, m_RayGenShadowSingleName, HDShaderIDs._RaytracedAreaShadowIntegration, m_DenoiseBuffer0);
                        cmd.SetRaytracingTextureParam(shadowRaytrace, m_RayGenShadowSingleName, HDShaderIDs._RaytracingDirectionBuffer, m_RaytracingDirectionBuffer);
                        cmd.SetRaytracingTextureParam(shadowRaytrace, m_RayGenShadowSingleName, HDShaderIDs._RaytracingDistanceBuffer, m_RaytracingDistanceBuffer);
                        cmd.SetRaytracingTextureParam(shadowRaytrace, m_RayGenShadowSingleName, HDShaderIDs._AnalyticProbBuffer, m_AnalyticProbBuffer);
                        cmd.DispatchRays(shadowRaytrace, m_RayGenShadowSingleName, (uint)hdCamera.actualWidth, (uint)hdCamera.actualHeight, 1);

                        // Let's do the following samples (if any)
                        for (int sampleIndex = 1; sampleIndex < rtEnvironement.shadowNumSamples; ++sampleIndex)
                        {
                            shadowComputeKernel = shadowsCompute.FindKernel("RaytracingAreaShadowNewSample");

                            // This pass generates a new sample based on the initial pre-pass
                            cmd.SetComputeBufferParam(shadowsCompute, shadowComputeKernel, HDShaderIDs._LightDatas, m_LightLoop.lightDatas);
                            cmd.SetComputeIntParam(shadowsCompute, HDShaderIDs._RaytracingTargetAreaLight, lightIdx);
                            cmd.SetComputeIntParam(shadowsCompute, HDShaderIDs._RaytracingNumSamples, rtEnvironement.shadowNumSamples);
                            cmd.SetComputeIntParam(shadowsCompute, HDShaderIDs._RaytracingSampleIndex, sampleIndex);
                            cmd.SetComputeMatrixParam(shadowsCompute, HDShaderIDs._RaytracingAreaWorldToLocal, worldToLocalArea);
                            cmd.SetComputeTextureParam(shadowsCompute, shadowComputeKernel, HDShaderIDs._DepthTexture, m_SharedRTManager.GetDepthStencilBuffer());
                            cmd.SetComputeTextureParam(shadowsCompute, shadowComputeKernel, HDShaderIDs._NormalBufferTexture, m_SharedRTManager.GetNormalBuffer());
                            cmd.SetComputeTextureParam(shadowsCompute, shadowComputeKernel, HDShaderIDs._GBufferTexture[0], m_GbufferManager.GetBuffer(0));
                            cmd.SetComputeTextureParam(shadowsCompute, shadowComputeKernel, HDShaderIDs._GBufferTexture[1], m_GbufferManager.GetBuffer(1));
                            cmd.SetComputeTextureParam(shadowsCompute, shadowComputeKernel, HDShaderIDs._GBufferTexture[2], m_GbufferManager.GetBuffer(2));
                            cmd.SetComputeTextureParam(shadowsCompute, shadowComputeKernel, HDShaderIDs._GBufferTexture[3], m_GbufferManager.GetBuffer(3));
                            cmd.SetComputeTextureParam(shadowsCompute, shadowComputeKernel, HDShaderIDs._AreaCookieTextures, m_LightLoop.areaLightCookieManager.GetTexCache());
                            cmd.SetComputeTextureParam(shadowsCompute, shadowComputeKernel, HDShaderIDs._RaytracedAreaShadowIntegration, m_DenoiseBuffer0);
                            cmd.SetComputeTextureParam(shadowsCompute, shadowComputeKernel, HDShaderIDs._RaytracedAreaShadowSample, m_DenoiseBuffer1);
                            cmd.SetComputeTextureParam(shadowsCompute, shadowComputeKernel, HDShaderIDs._RaytracingDirectionBuffer, m_RaytracingDirectionBuffer);
                            cmd.SetComputeTextureParam(shadowsCompute, shadowComputeKernel, HDShaderIDs._RaytracingDistanceBuffer, m_RaytracingDistanceBuffer);
                            cmd.SetComputeTextureParam(shadowsCompute, shadowComputeKernel, HDShaderIDs._AnalyticProbBuffer, m_AnalyticProbBuffer);
                            cmd.DispatchCompute(shadowsCompute, shadowComputeKernel, numTilesX, numTilesY, 1);

                            // This pass will use the previously generated sample and add it to the integration buffer
                            cmd.SetRaytracingBufferParam(shadowRaytrace, m_RayGenShadowSingleName, HDShaderIDs._LightDatas, m_LightLoop.lightDatas);
                            cmd.SetRaytracingTextureParam(shadowRaytrace, m_RayGenShadowSingleName, HDShaderIDs._DepthTexture, m_SharedRTManager.GetDepthStencilBuffer());
                            cmd.SetRaytracingTextureParam(shadowRaytrace, m_RayGenShadowSingleName, HDShaderIDs._RaytracedAreaShadowSample, m_DenoiseBuffer1);
                            cmd.SetRaytracingTextureParam(shadowRaytrace, m_RayGenShadowSingleName, HDShaderIDs._RaytracedAreaShadowIntegration, m_DenoiseBuffer0);
                            cmd.SetRaytracingTextureParam(shadowRaytrace, m_RayGenShadowSingleName, HDShaderIDs._RaytracingDirectionBuffer, m_RaytracingDirectionBuffer);
                            cmd.SetRaytracingTextureParam(shadowRaytrace, m_RayGenShadowSingleName, HDShaderIDs._RaytracingDistanceBuffer, m_RaytracingDistanceBuffer);
                            cmd.SetRaytracingTextureParam(shadowRaytrace, m_RayGenShadowSingleName, HDShaderIDs._AnalyticProbBuffer, m_AnalyticProbBuffer);
                            cmd.DispatchRays(shadowRaytrace, m_RayGenShadowSingleName, (uint)hdCamera.actualWidth, (uint)hdCamera.actualHeight, 1);
                        }
                    }
                    else
                    {
                        // This pass generates the analytic value and will do the full integration
                        cmd.SetRaytracingBufferParam(shadowRaytrace, m_RayGenShaderName, HDShaderIDs._LightDatas, m_LightLoop.lightDatas);
                        cmd.SetRaytracingIntParam(shadowRaytrace, HDShaderIDs._RaytracingTargetAreaLight, lightIdx);
                        cmd.SetRaytracingIntParam(shadowRaytrace, HDShaderIDs._RaytracingNumSamples, rtEnvironement.shadowNumSamples);
                        cmd.SetRaytracingMatrixParam(shadowRaytrace, HDShaderIDs._RaytracingAreaWorldToLocal, worldToLocalArea);
                        cmd.SetRaytracingTextureParam(shadowRaytrace, m_RayGenShaderName, HDShaderIDs._DepthTexture, m_SharedRTManager.GetDepthStencilBuffer());
                        cmd.SetRaytracingTextureParam(shadowRaytrace, m_RayGenShaderName, HDShaderIDs._NormalBufferTexture, m_SharedRTManager.GetNormalBuffer());
                        cmd.SetRaytracingTextureParam(shadowRaytrace, m_RayGenShaderName, HDShaderIDs._GBufferTexture[0], m_GbufferManager.GetBuffer(0));
                        cmd.SetRaytracingTextureParam(shadowRaytrace, m_RayGenShaderName, HDShaderIDs._GBufferTexture[1], m_GbufferManager.GetBuffer(1));
                        cmd.SetRaytracingTextureParam(shadowRaytrace, m_RayGenShaderName, HDShaderIDs._GBufferTexture[2], m_GbufferManager.GetBuffer(2));
                        cmd.SetRaytracingTextureParam(shadowRaytrace, m_RayGenShaderName, HDShaderIDs._GBufferTexture[3], m_GbufferManager.GetBuffer(3));
                        cmd.SetRaytracingIntParam(shadowRaytrace, HDShaderIDs._RayCountEnabled, m_RaytracingManager.rayCountManager.RayCountIsEnabled());
                        cmd.SetRaytracingTextureParam(shadowRaytrace, m_RayGenShaderName, HDShaderIDs._RayCountTexture, m_RaytracingManager.rayCountManager.rayCountTexture);
                        cmd.SetRaytracingTextureParam(shadowRaytrace, m_RayGenShaderName, HDShaderIDs._AreaCookieTextures, m_LightLoop.areaLightCookieManager.GetTexCache());
                        cmd.SetRaytracingTextureParam(shadowRaytrace, m_RayGenShaderName, HDShaderIDs._AnalyticProbBuffer, m_AnalyticProbBuffer);
                        cmd.SetRaytracingTextureParam(shadowRaytrace, m_RayGenShaderName, HDShaderIDs._RaytracedAreaShadowIntegration, m_DenoiseBuffer0);
                        cmd.DispatchRays(shadowRaytrace, m_RayGenShaderName, (uint)hdCamera.actualWidth, (uint)hdCamera.actualHeight, 1);
                    }
                }

                using (new ProfilingSample(cmd, "Combine Area Shadow", CustomSamplerId.RaytracingShadowCombination.GetSampler()))
                {
                    // Global parameters
                    cmd.SetComputeIntParam(shadowFilter, HDShaderIDs._RaytracingDenoiseRadius, rtEnvironement.shadowFilterRadius);
                    cmd.SetComputeIntParam(shadowFilter, HDShaderIDs._RaytracingShadowSlot, m_LightLoop.m_lightList.lights[lightIdx].rayTracedAreaShadowIndex);

                    // Given that we can't read and write into the same buffer, we store the current frame value and the history in the denoisebuffer1
                    cmd.SetComputeTextureParam(shadowFilter, copyTAAHistoryKernel, HDShaderIDs._AreaShadowHistoryRW, areaShadowHistoryArray);
                    cmd.SetComputeTextureParam(shadowFilter, copyTAAHistoryKernel, HDShaderIDs._DenoiseInputTexture, m_DenoiseBuffer0);
                    cmd.SetComputeTextureParam(shadowFilter, copyTAAHistoryKernel, HDShaderIDs._DenoiseOutputTextureRW, m_DenoiseBuffer1);
                    cmd.DispatchCompute(shadowFilter, copyTAAHistoryKernel, numTilesX, numTilesY, 1);

                    // Apply a vectorized temporal filtering pass and store it back in the denoisebuffer0 with the analytic value in the third channel
                    var historyScale = new Vector2(hdCamera.actualWidth / (float)areaShadowHistoryArray.rt.width, hdCamera.actualHeight / (float)areaShadowHistoryArray.rt.height);
                    cmd.SetComputeVectorParam(shadowFilter, HDShaderIDs._ScreenToTargetScaleHistory, historyScale);
                    cmd.SetComputeTextureParam(shadowFilter, applyTAAKernel, HDShaderIDs._AnalyticProbBuffer, m_AnalyticProbBuffer);
                    cmd.SetComputeTextureParam(shadowFilter, applyTAAKernel, HDShaderIDs._DepthTexture, m_SharedRTManager.GetDepthStencilBuffer());
                    cmd.SetComputeTextureParam(shadowFilter, applyTAAKernel, HDShaderIDs._AnalyticHistoryBuffer, areaAnalyticHistoryArray);
                    cmd.SetComputeTextureParam(shadowFilter, applyTAAKernel, HDShaderIDs._DenoiseInputTexture, m_DenoiseBuffer1);
                    cmd.SetComputeTextureParam(shadowFilter, applyTAAKernel, HDShaderIDs._DenoiseOutputTextureRW, m_DenoiseBuffer0);
                    cmd.SetComputeTextureParam(shadowFilter, applyTAAKernel, HDShaderIDs._AreaShadowHistoryRW, areaShadowHistoryArray);
                    cmd.DispatchCompute(shadowFilter, applyTAAKernel, numTilesX, numTilesY, 1);

                    // Now that we do not need it anymore, update the anyltic history
                    cmd.SetComputeTextureParam(shadowFilter, updateAnalyticHistory, HDShaderIDs._AnalyticHistoryBuffer, areaAnalyticHistoryArray);
                    cmd.SetComputeTextureParam(shadowFilter, updateAnalyticHistory, HDShaderIDs._AnalyticProbBuffer, m_AnalyticProbBuffer);

                    cmd.DispatchCompute(shadowFilter, updateAnalyticHistory, numTilesX, numTilesY, 1);

                    if (rtEnvironement.shadowFilterRadius > 0)
                    {
                        // Inject parameters for noise estimation
                        cmd.SetComputeTextureParam(shadowFilter, estimateNoiseKernel, HDShaderIDs._DepthTexture, m_SharedRTManager.GetDepthStencilBuffer());
                        cmd.SetComputeTextureParam(shadowFilter, estimateNoiseKernel, HDShaderIDs._NormalBufferTexture, m_SharedRTManager.GetNormalBuffer());
                        cmd.SetComputeTextureParam(shadowFilter, estimateNoiseKernel, HDShaderIDs._ScramblingTexture, m_PipelineResources.textures.scramblingTex);

                        // Noise estimation pre-pass
                        cmd.SetComputeTextureParam(shadowFilter, estimateNoiseKernel, HDShaderIDs._DenoiseInputTexture, m_DenoiseBuffer0);
                        cmd.SetComputeTextureParam(shadowFilter, estimateNoiseKernel, HDShaderIDs._DenoiseOutputTextureRW, m_DenoiseBuffer1);
                        cmd.DispatchCompute(shadowFilter, estimateNoiseKernel, numTilesX, numTilesY, 1);

                        // Reinject parameters for denoising
                        cmd.SetComputeTextureParam(shadowFilter, firstDenoiseKernel, HDShaderIDs._DepthTexture, m_SharedRTManager.GetDepthStencilBuffer());
                        cmd.SetComputeTextureParam(shadowFilter, firstDenoiseKernel, HDShaderIDs._NormalBufferTexture, m_SharedRTManager.GetNormalBuffer());
                        cmd.SetComputeTextureParam(shadowFilter, firstDenoiseKernel, HDShaderIDs._AreaShadowTextureRW, m_AreaShadowTextureArray);

                        // First denoising pass
                        cmd.SetComputeTextureParam(shadowFilter, firstDenoiseKernel, HDShaderIDs._DenoiseInputTexture, m_DenoiseBuffer1);
                        cmd.SetComputeTextureParam(shadowFilter, firstDenoiseKernel, HDShaderIDs._DenoiseOutputTextureRW, m_DenoiseBuffer0);
                        cmd.DispatchCompute(shadowFilter, firstDenoiseKernel, numTilesX, numTilesY, 1);
                    }

                    // Reinject parameters for denoising
                    cmd.SetComputeTextureParam(shadowFilter, secondDenoiseKernel, HDShaderIDs._DepthTexture, m_SharedRTManager.GetDepthStencilBuffer());
                    cmd.SetComputeTextureParam(shadowFilter, secondDenoiseKernel, HDShaderIDs._NormalBufferTexture, m_SharedRTManager.GetNormalBuffer());
                    cmd.SetComputeTextureParam(shadowFilter, secondDenoiseKernel, HDShaderIDs._AreaShadowTextureRW, m_AreaShadowTextureArray);

                    // Second (and final) denoising pass
                    cmd.SetComputeTextureParam(shadowFilter, secondDenoiseKernel, HDShaderIDs._DenoiseInputTexture, m_DenoiseBuffer0);
                    cmd.DispatchCompute(shadowFilter, secondDenoiseKernel, numTilesX, numTilesY, 1);
                }
            }

            // If this is the right debug mode and we have at least one light, write the first shadow to the denoise texture
            HDRenderPipeline hdrp = (RenderPipelineManager.currentPipeline as HDRenderPipeline);

            if (FullScreenDebugMode.RaytracedAreaShadow == hdrp.m_CurrentDebugDisplaySettings.data.fullScreenDebugMode && numLights > 0)
            {
                int targetKernel = shadowFilter.FindKernel("WriteShadowTextureDebug");

                cmd.SetComputeIntParam(shadowFilter, HDShaderIDs._RaytracingShadowSlot, 0);
                cmd.SetComputeTextureParam(shadowFilter, targetKernel, HDShaderIDs._AreaShadowTextureRW, m_AreaShadowTextureArray);
                cmd.SetComputeTextureParam(shadowFilter, targetKernel, HDShaderIDs._DenoiseOutputTextureRW, m_DenoiseBuffer0);
                cmd.DispatchCompute(shadowFilter, targetKernel, numTilesX, numTilesY, 1);

                hdrp.PushFullScreenDebugTexture(hdCamera, cmd, m_DenoiseBuffer0, FullScreenDebugMode.RaytracedAreaShadow);
            }
            return(true);
        }
예제 #5
0
        public bool RenderAreaShadows(HDCamera hdCamera, CommandBuffer cmd, ScriptableRenderContext renderContext, uint frameCount)
        {
            // NOTE: Here we cannot clear the area shadow texture because it is a texture array. So we need to bind it and make sure no material will try to read it in the shaders
            BindShadowTexture(cmd);

            // Let's check all the resources and states to see if we should render the effect
            HDRaytracingEnvironment rtEnvironement  = m_RaytracingManager.CurrentEnvironment();
            RaytracingShader        shadowsShader   = m_PipelineAsset.renderPipelineResources.shaders.shadowsRaytracing;
            ComputeShader           bilateralFilter = m_PipelineAsset.renderPipelineResources.shaders.areaBillateralFilterCS;
            bool invalidState = rtEnvironement == null || !rtEnvironement.raytracedShadows || hdCamera.frameSettings.litShaderMode != LitShaderMode.Deferred ||
                                shadowsShader == null || bilateralFilter == null ||
                                m_PipelineResources.textures.owenScrambledTex == null || m_PipelineResources.textures.scramblingTex == null;

            // If invalid state or ray-tracing acceleration structure, we stop right away
            if (invalidState)
            {
                return(false);
            }

            // Grab the acceleration structure for the target camera
            RaytracingAccelerationStructure accelerationStructure = m_RaytracingManager.RequestAccelerationStructure(rtEnvironement.shadowLayerMask);

            // Define the shader pass to use for the reflection pass
            cmd.SetRaytracingShaderPass(shadowsShader, "VisibilityDXR");

            // Set the acceleration structure for the pass
            cmd.SetRaytracingAccelerationStructure(shadowsShader, HDShaderIDs._RaytracingAccelerationStructureName, accelerationStructure);

            // Inject the ray-tracing sampling data
            cmd.SetRaytracingTextureParam(shadowsShader, m_RayGenShaderName, HDShaderIDs._OwenScrambledTexture, m_PipelineResources.textures.owenScrambledTex);
            cmd.SetRaytracingTextureParam(shadowsShader, m_RayGenShaderName, HDShaderIDs._ScramblingTexture, m_PipelineResources.textures.scramblingTex);

            int frameIndex = hdCamera.IsTAAEnabled() ? hdCamera.taaFrameIndex : (int)frameCount % 8;

            cmd.SetGlobalInt(HDShaderIDs._RaytracingFrameIndex, frameIndex);

            // Inject the ray generation data
            cmd.SetGlobalFloat(HDShaderIDs._RaytracingRayBias, rtEnvironement.rayBias);

            int numLights = m_LightLoop.m_lightList.lights.Count;

            for (int lightIdx = 0; lightIdx < numLights; ++lightIdx)
            {
                // If this is not a rectangular area light or it won't have shadows, skip it
                if (m_LightLoop.m_lightList.lights[lightIdx].lightType != GPULightType.Rectangle || m_LightLoop.m_lightList.lights[lightIdx].rayTracedAreaShadowIndex == -1)
                {
                    continue;
                }
                using (new ProfilingSample(cmd, "Raytrace Area Shadow", CustomSamplerId.RaytracingShadowIntegration.GetSampler()))
                {
                    LightData currentLight = m_LightLoop.m_lightList.lights[lightIdx];

                    // We need to build the world to area light matrix
                    worldToLocalArea.SetColumn(0, currentLight.right);
                    worldToLocalArea.SetColumn(1, currentLight.up);
                    worldToLocalArea.SetColumn(2, currentLight.forward);

                    // Compensate the  relative rendering if active
                    Vector3 lightPositionWS = currentLight.positionRWS;
                    if (ShaderConfig.s_CameraRelativeRendering != 0)
                    {
                        lightPositionWS += hdCamera.camera.transform.position;
                    }
                    worldToLocalArea.SetColumn(3, lightPositionWS);
                    worldToLocalArea.m33 = 1.0f;
                    worldToLocalArea     = worldToLocalArea.inverse;

                    // Inject the light data
                    cmd.SetRaytracingBufferParam(shadowsShader, m_RayGenShaderName, HDShaderIDs._LightDatas, m_LightLoop.lightDatas);
                    cmd.SetRaytracingIntParam(shadowsShader, HDShaderIDs._RaytracingTargetAreaLight, lightIdx);
                    cmd.SetRaytracingIntParam(shadowsShader, HDShaderIDs._RaytracingNumSamples, rtEnvironement.shadowNumSamples);
                    cmd.SetRaytracingMatrixParam(shadowsShader, HDShaderIDs._RaytracingAreaWorldToLocal, worldToLocalArea);

                    // Set the data for the ray generation
                    cmd.SetRaytracingTextureParam(shadowsShader, m_RayGenShaderName, HDShaderIDs._DepthTexture, m_SharedRTManager.GetDepthStencilBuffer());
                    cmd.SetRaytracingTextureParam(shadowsShader, m_RayGenShaderName, HDShaderIDs._NormalBufferTexture, m_SharedRTManager.GetNormalBuffer());
                    cmd.SetRaytracingTextureParam(shadowsShader, m_RayGenShaderName, HDShaderIDs._GBufferTexture[0], m_GbufferManager.GetBuffer(0));
                    cmd.SetRaytracingTextureParam(shadowsShader, m_RayGenShaderName, HDShaderIDs._GBufferTexture[1], m_GbufferManager.GetBuffer(1));
                    cmd.SetRaytracingTextureParam(shadowsShader, m_RayGenShaderName, HDShaderIDs._GBufferTexture[2], m_GbufferManager.GetBuffer(2));
                    cmd.SetRaytracingTextureParam(shadowsShader, m_RayGenShaderName, HDShaderIDs._GBufferTexture[3], m_GbufferManager.GetBuffer(3));
                    cmd.SetRaytracingIntParam(shadowsShader, HDShaderIDs._RayCountEnabled, m_RaytracingManager.rayCountManager.RayCountIsEnabled());
                    cmd.SetRaytracingTextureParam(shadowsShader, m_RayGenShaderName, HDShaderIDs._RayCountTexture, m_RaytracingManager.rayCountManager.rayCountTexture);

                    // Set the output textures
                    cmd.SetRaytracingTextureParam(shadowsShader, m_RayGenShaderName, _SNBuffer, m_SNBuffer);
                    cmd.SetRaytracingTextureParam(shadowsShader, m_RayGenShaderName, _UNBuffer, m_UNBuffer);
                    cmd.SetRaytracingTextureParam(shadowsShader, m_RayGenShaderName, _UBuffer, m_UBuffer);

                    // Bind the area cookie textures to the raytracing shader
                    cmd.SetRaytracingTextureParam(shadowsShader, m_RayGenShaderName, HDShaderIDs._AreaCookieTextures, m_LightLoop.areaLightCookieManager.GetTexCache());

                    // Run the shadow evaluation
                    cmd.DispatchRays(shadowsShader, m_RayGenShaderName, (uint)hdCamera.actualWidth, (uint)hdCamera.actualHeight, 1);
                }

                using (new ProfilingSample(cmd, "Combine Area Shadow", CustomSamplerId.RaytracingShadowCombination.GetSampler()))
                {
                    // Fetch the filter kernel
                    m_KernelFilter = bilateralFilter.FindKernel("AreaBilateralShadow");

                    // Inject all the parameters for the compute
                    cmd.SetComputeTextureParam(bilateralFilter, m_KernelFilter, _SNBuffer, m_SNBuffer);
                    cmd.SetComputeTextureParam(bilateralFilter, m_KernelFilter, _UNBuffer, m_UNBuffer);
                    cmd.SetComputeTextureParam(bilateralFilter, m_KernelFilter, HDShaderIDs._DepthTexture, m_SharedRTManager.GetDepthStencilBuffer());
                    cmd.SetComputeTextureParam(bilateralFilter, m_KernelFilter, HDShaderIDs._NormalBufferTexture, m_SharedRTManager.GetNormalBuffer());
                    cmd.SetComputeIntParam(bilateralFilter, _DenoiseRadius, rtEnvironement.shadowFilterRadius);
                    cmd.SetComputeFloatParam(bilateralFilter, _GaussianSigma, rtEnvironement.shadowFilterSigma);
                    cmd.SetComputeIntParam(bilateralFilter, HDShaderIDs._RaytracingShadowSlot, m_LightLoop.m_lightList.lights[lightIdx].rayTracedAreaShadowIndex);

                    // Set the output slot
                    cmd.SetComputeTextureParam(bilateralFilter, m_KernelFilter, HDShaderIDs._AreaShadowTextureRW, m_AreaShadowTextureArray);

                    // Texture dimensions
                    int texWidth  = m_AreaShadowTextureArray.rt.width;
                    int texHeight = m_AreaShadowTextureArray.rt.width;

                    // Evaluate the dispatch parameters
                    int areaTileSize = 8;
                    int numTilesX    = (texWidth + (areaTileSize - 1)) / areaTileSize;
                    int numTilesY    = (texHeight + (areaTileSize - 1)) / areaTileSize;

                    // Compute the texture
                    cmd.DispatchCompute(bilateralFilter, m_KernelFilter, numTilesX, numTilesY, 1);
                }
            }
            return(true);
        }