private string GetChangeManagedNameActionResult(TypeInfo typeInfo, ConvType convType, string oldName) { if (Settings.m_ruleSet != null) { ICategory category = TypeCategory.GetInstance(); TypeInfoMatchTarget target = null; using (TypeAttr attr = typeInfo.GetTypeAttr()) { TypeLibTypes.Interop.TYPEKIND kind = attr.typekind; target = new TypeInfoMatchTarget(typeInfo.GetContainingTypeLib(), typeInfo, kind); } AbstractActionManager actionManager = RuleEngine.GetActionManager(); List <Rule> changeNameRules = Settings.m_ruleSet.GetRule( category, ChangeManagedNameActionDef.GetInstance(), target); if (changeNameRules.Count != 0) { if (changeNameRules.Count > 1) { Output.WriteWarning(Resource.FormatString("Wrn_RuleMultipleMatch", ChangeManagedNameActionDef.GetInstance()), WarningCode.Wrn_RuleMultipleMatch); } Rule changeNameRule = changeNameRules[changeNameRules.Count - 1]; int namespaceSplit = oldName.LastIndexOf('.'); string oldNamespace = ""; if (namespaceSplit != -1) { oldNamespace = oldName.Substring(0, namespaceSplit + 1); } return(oldNamespace + (changeNameRule.Action as ChangeManagedNameAction).NewName); } } return(oldName); }
private void _Convert() { VarEnum vt = (VarEnum)m_typeDesc.vt; // Strip out VT_PTR while (vt == VarEnum.VT_PTR) { m_typeDesc = m_typeDesc.lptdesc; vt = (VarEnum)m_typeDesc.vt; m_nativeIndirections++; } // Strip out VT_BYREF if ((vt & VarEnum.VT_BYREF) != 0) { vt &= ~VarEnum.VT_BYREF; m_nativeIndirections++; } // // Find the corresponding type and save it in result and store the custom attribute in m_attribute // Type result = null; m_attribute = null; switch (vt) { case VarEnum.VT_HRESULT: result = typeof(int); m_attribute = CustomAttributeHelper.GetBuilderForMarshalAs(UnmanagedType.Error); SetUnmanagedType(UnmanagedType.Error); break; case VarEnum.VT_VOID: result = typeof(void); break; case VarEnum.VT_UINT: result = typeof(uint); break; case VarEnum.VT_INT: result = typeof(int); break; case VarEnum.VT_UI1: result = typeof(byte); break; case VarEnum.VT_UI2: result = typeof(ushort); break; case VarEnum.VT_UI4: result = typeof(uint); break; case VarEnum.VT_UI8: result = typeof(ulong); break; case VarEnum.VT_I1: result = typeof(sbyte); break; case VarEnum.VT_I2: result = typeof(short); break; case VarEnum.VT_I4: result = typeof(int); break; case VarEnum.VT_I8: result = typeof(long); break; case VarEnum.VT_R4: result = typeof(float); break; case VarEnum.VT_R8: result = typeof(double); break; case VarEnum.VT_ERROR: result = typeof(int); m_attribute = CustomAttributeHelper.GetBuilderForMarshalAs(UnmanagedType.Error); SetUnmanagedType(UnmanagedType.Error); break; case VarEnum.VT_BSTR: result = typeof(string); m_attribute = CustomAttributeHelper.GetBuilderForMarshalAs(UnmanagedType.BStr); SetUnmanagedType(UnmanagedType.BStr); // BSTR => string is special as BSTR are actually OLECHAR*, so we should add one indirection m_nativeIndirections++; break; case VarEnum.VT_DISPATCH: if (m_convertingNewEnumMember) { // When we are creating a new enum member, convert IDispatch to IEnumVariant TryUseCustomMarshaler(WellKnownGuids.IID_IEnumVARIANT, out result); } else { result = typeof(object); m_attribute = CustomAttributeHelper.GetBuilderForMarshalAs(UnmanagedType.IDispatch); SetUnmanagedType(UnmanagedType.IDispatch); } // VT_DISPATCH => IDispatch * m_nativeIndirections++; break; case VarEnum.VT_UNKNOWN: if (m_convertingNewEnumMember) { // When we are creating a new enum member, convert IUnknown to IEnumVariant TryUseCustomMarshaler(WellKnownGuids.IID_IEnumVARIANT, out result); } else { result = typeof(object); m_attribute = CustomAttributeHelper.GetBuilderForMarshalAs(UnmanagedType.IUnknown); SetUnmanagedType(UnmanagedType.IUnknown); } // VT_UNKNOWN => IUnknown * m_nativeIndirections++; break; case VarEnum.VT_LPSTR: result = typeof(string); m_attribute = CustomAttributeHelper.GetBuilderForMarshalAs(UnmanagedType.LPStr); SetUnmanagedType(UnmanagedType.LPStr); m_nativeIndirections++; break; case VarEnum.VT_LPWSTR: result = typeof(string); m_attribute = CustomAttributeHelper.GetBuilderForMarshalAs(UnmanagedType.LPWStr); SetUnmanagedType(UnmanagedType.LPWStr); m_nativeIndirections++; break; case VarEnum.VT_PTR: Debug.Assert(false, "Should not get here"); break; case VarEnum.VT_SAFEARRAY: { TypeDesc arrayDesc = m_typeDesc.lpadesc.tdescElem; VarEnum arrayVt = (VarEnum)arrayDesc.vt; Type userDefinedType = null; TypeConverter elemTypeConverter = new TypeConverter(m_info, m_typeInfo, arrayDesc, ConversionType.Element); Type elemType = elemTypeConverter.ConvertedType; // Determine the right VT for MarshalAs attribute bool pointerArray = false; if (arrayVt == VarEnum.VT_PTR) { arrayDesc = arrayDesc.lptdesc; arrayVt = (VarEnum)arrayDesc.vt; pointerArray = true; // We don't support marshalling pointers in array except UserType* & void* if (arrayVt != VarEnum.VT_USERDEFINED && arrayVt != VarEnum.VT_VOID) { arrayVt = VarEnum.VT_INT; m_conversionLoss = true; } } // // Emit UserDefinedSubType if necessary // if (arrayVt == VarEnum.VT_USERDEFINED) { if (elemType.IsEnum) { if (pointerArray) { arrayVt = VarEnum.VT_INT; m_conversionLoss = true; } else { // For enums, using VT_RECORD is better than VT_I4 // Within the runtime, if you specify VT_I4 for enums in SafeArray, we treat it the same way as VT_RECORD // Reflection API also accepts VT_RECORD instead of VT_I4 arrayVt = VarEnum.VT_RECORD; } } else if (elemType.IsValueType) { if (pointerArray) { arrayVt = VarEnum.VT_INT; m_conversionLoss = true; } else { arrayVt = VarEnum.VT_RECORD; } } else if (elemType.IsInterface) { if (pointerArray) { // decide VT_UNKNOWN / VT_DISPATCH if (InterfaceSupportsDispatch(elemType)) { arrayVt = VarEnum.VT_DISPATCH; } else { arrayVt = VarEnum.VT_UNKNOWN; } } else { arrayVt = VarEnum.VT_INT; m_conversionLoss = true; } } else if (elemType == typeof(object) && !elemTypeConverter.UseDefaultMarshal && (elemTypeConverter.UnmanagedType == UnmanagedType.IUnknown)) { // Special case for object that doesn't have default interface and will be marshalled as IUnknown arrayVt = VarEnum.VT_UNKNOWN; } userDefinedType = elemType; } m_conversionLoss |= elemTypeConverter.IsConversionLoss; // Transform to System.Array if /sysarray is set and not vararg if (((m_info.Settings.m_flags & TypeLibImporterFlags.SafeArrayAsSystemArray) != 0) && m_conversionType != ConversionType.VarArgParameter) { result = typeof(System.Array); } else { result = elemType.MakeArrayType(); // Don't need SafeArrayUserDefinedSubType for non System.Array case userDefinedType = null; } // TlbImp doesn't have this check for vt == VT_RECORD/VT_UNKNOWN/VT_DISPATCH therefore // it will emit SafeArrayUserDefinedSubType even it is not necessary/not valid // TlbImp2 will take this into account if ((userDefinedType != null) && (arrayVt == VarEnum.VT_RECORD || arrayVt == VarEnum.VT_UNKNOWN || arrayVt == VarEnum.VT_DISPATCH)) { // The name of the type would be full name in TlbImp2 m_attribute = CustomAttributeHelper.GetBuilderForMarshalAsSafeArrayAndUserDefinedSubType(arrayVt, userDefinedType); } else { // Use I4 for enums when SafeArrayUserDefinedSubType is not specified if (elemType.IsEnum && arrayVt == VarEnum.VT_RECORD) { arrayVt = VarEnum.VT_I4; } m_attribute = CustomAttributeHelper.GetBuilderForMarshalAsSafeArray(arrayVt); } SetUnmanagedType(UnmanagedType.SafeArray); // SafeArray <=> array is special because SafeArray is similar to Element* m_nativeIndirections++; break; } case VarEnum.VT_RECORD: case VarEnum.VT_USERDEFINED: { // Handle structs, interfaces, enums, and unions // Check if any ResolveTo Rule applied. TypeInfo refType = m_typeInfo.GetRefTypeInfo(m_typeDesc.hreftype); TypeAttr refAttr = refType.GetTypeAttr(); Type resolveToType; if (RuleEngineResolveRedirection(m_info.Settings.m_ruleSet, refType, out resolveToType)) { result = resolveToType; break; } // Support for aliasing TypeInfo realType; TypeAttr realAttr; ConvCommon.ResolveAlias(m_typeInfo, m_typeDesc, out realType, out realAttr); // Alias for a built-in type? if (realAttr.typekind == TypeLibTypes.Interop.TYPEKIND.TKIND_ALIAS) { // Recurse to convert the built-in type TypeConverter builtinType = new TypeConverter(m_info, realType, realAttr.tdescAlias, m_conversionType); result = builtinType.ConvertedType; m_attribute = builtinType.m_attribute; } else { // Otherwise, we must have a non-aliased type, and it is a user defined type // We should use the TypeInfo that this TypeDesc refers to realType = m_typeDesc.GetUserDefinedTypeInfo(m_typeInfo); TypeLibTypes.Interop.TYPEKIND typeKind = realAttr.typekind; using (realAttr = realType.GetTypeAttr()) { TypeLib typeLib = realType.GetContainingTypeLib(); // Convert StdOle2.Guid to System.Guid if (_IsStdOleGuid(realType)) { result = typeof(Guid); m_attribute = null; ResetUnmanagedType(); } else if (realAttr.Guid == WellKnownGuids.IID_IUnknown) { // Occasional goto makes sense // If VT_USERDEFINE *, and the VT_USERDEFINE is actually a VT_UNKNOWN => IUnknown *, we need to decrease the m_nativeIndirections // to compensate for the m_nativeIndirections++ in VT_UNKNOWN m_nativeIndirections--; goto case VarEnum.VT_UNKNOWN; } else if (realAttr.Guid == WellKnownGuids.IID_IDispatch) { // Occasional goto makes sense // See the IID_IUnknown case for why we need to -- m_nativeIndirections--; goto case VarEnum.VT_DISPATCH; } else { // Need to use CustomMarshaler? Type customMarshalerResultType; if (TryUseCustomMarshaler(realAttr.Guid, out customMarshalerResultType)) { result = customMarshalerResultType; } else { IConvBase ret = m_info.GetTypeRef(ConvCommon.TypeKindToConvType(typeKind), realType); if (m_conversionType == ConversionType.Field) { // Too bad. Reflection API requires that the field type must be created before creating // the struct/union type // Only process indirection = 0 case because > 1 case will be converted to IntPtr // Otherwise it will leads to a infinite recursion, if you consider the following scenario: // struct A // { // struct B // { // struct A *a; // } b; // } if (ret is ConvUnionLocal && m_nativeIndirections == 0) { ConvUnionLocal convUnion = ret as ConvUnionLocal; convUnion.Create(); } else if (ret is ConvStructLocal && m_nativeIndirections == 0) { ConvStructLocal convStruct = ret as ConvStructLocal; convStruct.Create(); } else if (ret is ConvEnumLocal && m_nativeIndirections == 0) { ConvEnumLocal convEnum = ret as ConvEnumLocal; convEnum.Create(); } } result = ret.ManagedType; // Don't reply on result.IsInterface as we have some weird scenarios like refering to a exported type lib // which has interfaces that are class interfaces and have the same name as a class. // For example, manage class M has a class interface _M, and their managed name are both M if (ret.ConvType == ConvType.Interface || ret.ConvType == ConvType.EventInterface || ret.ConvType == ConvType.ClassInterface) { m_attribute = CustomAttributeHelper.GetBuilderForMarshalAs(UnmanagedType.Interface); SetUnmanagedType(UnmanagedType.Interface); } if (ret.ConvType == ConvType.CoClass) { // We need to convert CoClass to default interface (could be converted to class interface if it is exclusive) in signatures Debug.Assert(ret is IConvCoClass); IConvCoClass convCoClass = ret as IConvCoClass; if (convCoClass.DefaultInterface != null) { // Use the default interface result = convCoClass.DefaultInterface.ManagedType; m_attribute = CustomAttributeHelper.GetBuilderForMarshalAs(UnmanagedType.Interface); SetUnmanagedType(UnmanagedType.Interface); } else { // The coclass has no default interface (source interface excluded) // Marshal it as IUnknown result = typeof(object); m_attribute = CustomAttributeHelper.GetBuilderForMarshalAs(UnmanagedType.IUnknown); SetUnmanagedType(UnmanagedType.IUnknown); } } } } } } } break; case VarEnum.VT_VARIANT: result = typeof(object); m_attribute = CustomAttributeHelper.GetBuilderForMarshalAs(UnmanagedType.Struct); SetUnmanagedType(UnmanagedType.Struct); // object is special that it will be marshaled to VARIANT // because we'll think object as having one indirection, now we are one indirection less, // so we need add 1 to m_indirections m_nativeIndirections++; break; case VarEnum.VT_CY: result = typeof(System.Decimal); m_attribute = CustomAttributeHelper.GetBuilderForMarshalAs(UnmanagedType.Currency); SetUnmanagedType(UnmanagedType.Currency); break; case VarEnum.VT_DATE: result = typeof(System.DateTime); break; case VarEnum.VT_DECIMAL: result = typeof(System.Decimal); break; case VarEnum.VT_CARRAY: { TypeDesc elemTypeDesc = m_typeDesc.lptdesc; TypeConverter elemTypeConverter = new TypeConverter(m_info, m_typeInfo, elemTypeDesc, ConversionType.Element); Type elemType = elemTypeConverter.ConvertedType; result = elemType.MakeArrayType(); m_conversionLoss |= elemTypeConverter.IsConversionLoss; uint elements = 1; SAFEARRAYBOUND[] bounds = m_typeDesc.lpadesc.Bounds; foreach (SAFEARRAYBOUND bound in bounds) { elements *= bound.cElements; } // SizeConst can only hold Int32.MaxValue if (elements <= Int32.MaxValue) { UnmanagedType arrayType; if (m_conversionType == ConversionType.Field) { arrayType = UnmanagedType.ByValArray; } else { arrayType = UnmanagedType.LPArray; } if (elemTypeConverter.UseDefaultMarshal) { m_attribute = CustomAttributeHelper.GetBuilderForMarshalAsConstArray(arrayType, (int)elements); } else { if (elemTypeConverter.UnmanagedType == UnmanagedType.BStr || elemTypeConverter.UnmanagedType == UnmanagedType.LPStr || elemTypeConverter.UnmanagedType == UnmanagedType.LPWStr || elemTypeConverter.UnmanagedType == UnmanagedType.VariantBool) { m_attribute = CustomAttributeHelper.GetBuilderForMarshalAsConstArray(arrayType, (int)elements, elemTypeConverter.UnmanagedType); } else { m_attribute = CustomAttributeHelper.GetBuilderForMarshalAsConstArray(arrayType, (int)elements); } } SetUnmanagedType(arrayType); } else { m_nativeIndirections = 0; result = typeof(IntPtr); m_attribute = null; ResetUnmanagedType(); m_conversionLoss = true; } } break; case VarEnum.VT_BOOL: // For VT_BOOL in fields, use short if v2 switch is not specified. if (m_conversionType == ConversionType.Field) { if (m_info.Settings.m_isVersion2) { result = typeof(bool); m_attribute = CustomAttributeHelper.GetBuilderForMarshalAs(UnmanagedType.VariantBool); SetUnmanagedType(UnmanagedType.VariantBool); } else { result = typeof(short); } } else { result = typeof(bool); SetUnmanagedType(UnmanagedType.VariantBool); } break; default: m_info.ReportEvent( WarningCode.Wrn_BadVtType, Resource.FormatString("Wrn_BadVtType", (int)vt, m_typeInfo.GetDocumentation())); result = typeof(IntPtr); m_conversionLoss = true; break; } // // String -> StringBuilder special case // if (result == typeof(string)) { if (_IsParamOut() && m_nativeIndirections == 1 && (m_conversionType == ConversionType.Parameter || m_conversionType == ConversionType.VarArgParameter)) { // [out] or [in, out] LPSTR/LPWSTR scenario if (vt != VarEnum.VT_BSTR) { // String is immutable and cannot be [out]/[in, out]. We can convert to StringBuilder result = typeof(StringBuilder); } else // VT_BSTR { // VT_BSTR is also immutable. So conversion loss here m_conversionLoss = true; result = typeof(IntPtr); m_attribute = null; m_nativeIndirections = 0; ResetUnmanagedType(); } } } // Special rule for void* => IntPtr if (result == typeof(void)) { result = typeof(IntPtr); switch (m_conversionType) { case ConversionType.Element: m_nativeIndirections = 0; break; case ConversionType.Field: m_nativeIndirections = 0; break; default: if (m_nativeIndirections > 1) { m_nativeIndirections = 1; } else { m_nativeIndirections = 0; } break; } } // // If the type is already a byref type, remove the byref and add extra indirection(s). // This is necessary to avoid trying to call MakeByRef on the byref type // if (result.IsByRef) { result = result.GetElementType(); if (result.IsValueType) { m_nativeIndirections++; // Value& = Value * } else { m_nativeIndirections += 2; // RefType& = RefType** } } // // Process indirection // if (m_nativeIndirections > 0) { if (result.IsValueType) { switch (m_conversionType) { case ConversionType.VarArgParameter: case ConversionType.Parameter: // Decimal/Guid can support extra level of indirection using LpStruct in parameters // LpStruct has no effect in other places and for other types // Only use LpStruct for scenarios like GUID ** // This is different from old TlbImp. Old TlbImp will use IntPtr if ((result == typeof(Decimal) || result == typeof(Guid)) && m_nativeIndirections == 2) { m_nativeIndirections--; m_attribute = CustomAttributeHelper.GetBuilderForMarshalAs(UnmanagedType.LPStruct); ResetUnmanagedType(); SetUnmanagedType(UnmanagedType.LPStruct); } if (m_nativeIndirections >= 2) { m_conversionLoss = true; result = typeof(IntPtr); m_attribute = null; ResetUnmanagedType(); } else if (m_nativeIndirections > 0) { result = result.MakeByRefType(); } break; case ConversionType.Field: m_conversionLoss = true; result = typeof(IntPtr); m_attribute = null; ResetUnmanagedType(); break; case ConversionType.ParamRetVal: m_nativeIndirections--; goto case ConversionType.ReturnValue; // Fall through to ConversionType.ReturnValue case ConversionType.ReturnValue: if (m_nativeIndirections >= 1) { m_conversionLoss = true; result = typeof(IntPtr); m_attribute = null; ResetUnmanagedType(); } break; case ConversionType.Element: m_conversionLoss = true; result = typeof(IntPtr); m_attribute = null; ResetUnmanagedType(); break; } } else { switch (m_conversionType) { case ConversionType.Field: // ** => IntPtr, ConversionLoss if (m_nativeIndirections > 1) { result = typeof(IntPtr); m_conversionLoss = true; m_attribute = null; ResetUnmanagedType(); } break; case ConversionType.VarArgParameter: case ConversionType.Parameter: if (m_nativeIndirections > 2) { result = typeof(IntPtr); m_conversionLoss = true; m_attribute = null; ResetUnmanagedType(); } else if (m_nativeIndirections == 2) { result = result.MakeByRefType(); } break; case ConversionType.ParamRetVal: m_nativeIndirections--; goto case ConversionType.ReturnValue; // Fall through to ConversionType.ReturnValue case ConversionType.ReturnValue: if (m_nativeIndirections > 1) { result = typeof(IntPtr); m_conversionLoss = true; m_attribute = null; ResetUnmanagedType(); } break; case ConversionType.Element: if (m_nativeIndirections > 1) { m_conversionLoss = true; result = typeof(IntPtr); m_attribute = null; ResetUnmanagedType(); } break; } } } m_convertedType = result; }
public AssemblyBuilder DoProcess( Object typeLib, string asmFilename, TypeLibImporterFlags flags, ITypeLibImporterNotifySink notifySink, byte[] publicKey, StrongNameKeyPair keyPair, string asmNamespace, Version asmVersion, bool isVersion2, bool isPreserveSig, string ruleSetFileName) { m_resolver = notifySink; TypeLib tlb = new TypeLib((TypeLibTypes.Interop.ITypeLib)typeLib); if (asmNamespace == null) { asmNamespace = tlb.GetDocumentation(); string fileName = System.IO.Path.GetFileNameWithoutExtension(asmFilename); if (fileName != asmNamespace) { asmNamespace = fileName; } // // Support for GUID_ManagedName (for namespace) // string customManagedNamespace = tlb.GetCustData(CustomAttributeGuids.GUID_ManagedName) as string; if (customManagedNamespace != null) { customManagedNamespace = customManagedNamespace.Trim(); if (customManagedNamespace.ToUpper().EndsWith(".DLL")) { customManagedNamespace = customManagedNamespace.Substring(0, customManagedNamespace.Length - 4); } else if (customManagedNamespace.ToUpper().EndsWith(".EXE")) { customManagedNamespace = customManagedNamespace.Substring(0, customManagedNamespace.Length - 4); } asmNamespace = customManagedNamespace; } } // // Check for GUID_ExportedFromComPlus // object value = tlb.GetCustData(CustomAttributeGuids.GUID_ExportedFromComPlus); if (value != null) { // Make this a critical failure, instead of returning null which will be ignored. throw new TlbImpGeneralException(Resource.FormatString("Err_CircularImport", asmNamespace), ErrorCode.Err_CircularImport); } string strModuleName = asmFilename; if (asmFilename.Contains("\\")) { int nIndex; for (nIndex = strModuleName.Length; strModuleName[nIndex - 1] != '\\'; --nIndex) { ; } strModuleName = strModuleName.Substring(nIndex); } // If the version information was not specified, then retrieve it from the typelib. if (asmVersion == null) { using (TypeLibAttr attr = tlb.GetLibAttr()) { asmVersion = new Version(attr.wMajorVerNum, attr.wMinorVerNum, 0, 0); } } // Assembly name should not have .DLL // while module name must contain the .DLL string strAsmName = String.Copy(strModuleName); if (strAsmName.EndsWith(".DLL", StringComparison.InvariantCultureIgnoreCase)) { strAsmName = strAsmName.Substring(0, strAsmName.Length - 4); } AssemblyName assemblyName = new AssemblyName(); assemblyName.Name = strAsmName; assemblyName.SetPublicKey(publicKey); assemblyName.Version = asmVersion; assemblyName.KeyPair = keyPair; m_assemblyBuilder = CreateAssemblyBuilder(assemblyName, tlb, flags); m_moduleBuilder = CreateModuleBuilder(m_assemblyBuilder, strModuleName); // Add a listener for the reflection load only resolve events. AppDomain currentDomain = Thread.GetDomain(); ResolveEventHandler asmResolveHandler = new ResolveEventHandler(ReflectionOnlyResolveAsmEvent); currentDomain.ReflectionOnlyAssemblyResolve += asmResolveHandler; ConverterSettings settings; settings.m_isGenerateClassInterfaces = true; settings.m_namespace = asmNamespace; settings.m_flags = flags; settings.m_isVersion2 = isVersion2; settings.m_isPreserveSig = isPreserveSig; RuleEngine.InitRuleEngine(new TlbImpActionManager(), new TlbImpCategoryManager(), new TlbImpConditionManager(), new TlbImpOperatorManager()); if (ruleSetFileName != null) { try { RuleFileParser parser = new RuleFileParser(ruleSetFileName); settings.m_ruleSet = parser.Parse(); } catch (Exception ex) { Output.WriteWarning(Resource.FormatString("Wrn_LoadRuleFileFailed", ruleSetFileName, ex.Message), WarningCode.Wrn_LoadRuleFileFailed); settings.m_ruleSet = null; } } else { settings.m_ruleSet = null; } m_converterInfo = new ConverterInfo(m_moduleBuilder, tlb, m_resolver, settings); // // Generate class interfaces // NOTE: // We have to create class interface ahead of time because of the need to convert default interfaces to // class interfafces. However, this creates another problem that the event interface is always named first // before the other interfaces, because we need to create the type builder for the event interface first // so that we can create a class interface that implement it. But in the previous version of TlbImp, // it doesn't have to do that because it can directly create a typeref with the class interface name, // without actually creating anything like the TypeBuilder. The result is that the name would be different // with interop assemblies generated by old tlbimp in this case. // Given the nature of reflection API, this cannot be easily workarounded unless we switch to metadata APIs. // I believe this is acceptable because this only happens when: // 1. People decide to migrate newer .NET framework // 2. The event interface name conflicts with a normal interface // // In this case the problem can be easily fixed with a global refactoring, so I wouldn't worry about that // if (m_converterInfo.GenerateClassInterfaces) { CreateClassInterfaces(); } // // Generate the remaining types except coclass // Because during creating coclass, we require every type, including all the referenced type to be created // This is a restriction of reflection API that when you override a method in parent interface, the method info // is needed so the type must be already created and loaded // List <TypeInfo> coclassList = new List <TypeInfo>(); int nCount = tlb.GetTypeInfoCount(); for (int n = 0; n < nCount; ++n) { TypeInfo type = null; try { type = tlb.GetTypeInfo(n); string strType = type.GetDocumentation(); TypeInfo typeToProcess; TypeAttr attrToProcess; using (TypeAttr attr = type.GetTypeAttr()) { TypeLibTypes.Interop.TYPEKIND kind = attr.typekind; if (kind == TypeLibTypes.Interop.TYPEKIND.TKIND_ALIAS) { ConvCommon.ResolveAlias(type, attr.tdescAlias, out typeToProcess, out attrToProcess); if (attrToProcess.typekind == TypeLibTypes.Interop.TYPEKIND.TKIND_ALIAS) { continue; } else { // We need to duplicate the definition of the user defined type in the name of the alias kind = attrToProcess.typekind; typeToProcess = type; attrToProcess = attr; } } else { typeToProcess = type; attrToProcess = attr; } switch (kind) { // Process coclass later because of reflection API requirements case TypeLibTypes.Interop.TYPEKIND.TKIND_COCLASS: coclassList.Add(typeToProcess); break; case TypeLibTypes.Interop.TYPEKIND.TKIND_ENUM: m_converterInfo.GetEnum(typeToProcess, attrToProcess); break; case TypeLibTypes.Interop.TYPEKIND.TKIND_DISPATCH: case TypeLibTypes.Interop.TYPEKIND.TKIND_INTERFACE: m_converterInfo.GetInterface(typeToProcess, attrToProcess); break; case TypeLibTypes.Interop.TYPEKIND.TKIND_MODULE: m_converterInfo.GetModule(typeToProcess, attrToProcess); break; case TypeLibTypes.Interop.TYPEKIND.TKIND_RECORD: m_converterInfo.GetStruct(typeToProcess, attrToProcess); break; case TypeLibTypes.Interop.TYPEKIND.TKIND_UNION: m_converterInfo.GetUnion(typeToProcess, attrToProcess); break; } m_converterInfo.ReportEvent( MessageCode.Msg_TypeInfoImported, Resource.FormatString("Msg_TypeInfoImported", typeToProcess.GetDocumentation())); } } catch (ReflectionTypeLoadException) { throw; // Fatal failure. Throw } catch (TlbImpResolveRefFailWrapperException) { throw; // Fatal failure. Throw } catch (TlbImpGeneralException) { throw; // Fatal failure. Throw } catch (TypeLoadException) { throw; // TypeLoadException is critical. Throw. } catch (Exception) { } } // Process coclass after processing all the other types foreach (TypeInfo type in coclassList) { using (TypeAttr attr = type.GetTypeAttr()) { try { m_converterInfo.GetCoClass(type, attr); } catch (ReflectionTypeLoadException) { throw; // Fatal failure. Throw } catch (TlbImpResolveRefFailWrapperException) { throw; // Fatal failure. Throw } catch (TlbImpGeneralException) { throw; // Fatal failure. Throw } catch (TypeLoadException) { throw; // TypeLoadException is critical. Throw. } catch (Exception) { } } } // // Build an array of EventItfInfo & generate event provider / event sink helpers // Event.TCEAdapterGenerator eventAdapterGenerator = new Event.TCEAdapterGenerator(); List <Event.EventItfInfo> eventItfList = new List <Event.EventItfInfo>(); foreach (IConvBase symbol in m_converterInfo.GetAllConvBase) { IConvInterface convInterface = symbol as IConvInterface; if (convInterface != null) { if (convInterface.EventInterface != null) { Debug.Assert(convInterface.EventInterface is ConvEventInterfaceLocal); ConvEventInterfaceLocal local = convInterface.EventInterface as ConvEventInterfaceLocal; Type eventInterfaceType = convInterface.EventInterface.ManagedType; // Build EventItfInfo and add to the list Type sourceInterfaceType = convInterface.ManagedType; string sourceInterfaceName = sourceInterfaceType.FullName; Event.EventItfInfo eventItfInfo = new Event.EventItfInfo( eventInterfaceType.FullName, sourceInterfaceName, local.EventProviderName, eventInterfaceType, convInterface.ManagedType); eventItfList.Add(eventItfInfo); } } } eventAdapterGenerator.Process(m_moduleBuilder, eventItfList); return(m_assemblyBuilder); }
protected void DefineType(ConverterInfo info, TypeInfo typeInfo, bool dealWithAlias) { m_info = info; m_typeInfo = typeInfo; if (dealWithAlias) { m_nonAliasedTypeInfo = ConvCommon.GetAlias(typeInfo); } else { m_nonAliasedTypeInfo = typeInfo; } try { OnDefineType(); // // Emit SuppressUnmanagedCodeSecurityAttribute for /unsafe switch // if ((m_info.Settings.m_flags & TypeLibImporterFlags.UnsafeInterfaces) != 0) { if (ConvType != ConvType.ClassInterface && ConvType != ConvType.EventInterface) { m_typeBuilder.SetCustomAttribute(CustomAttributeHelper.GetBuilderForSuppressUnmanagedCodeSecurity()); } } // Rule Engine AddAttributeAction if (m_info.Settings.m_ruleSet != null) { ICategory category = TypeCategory.GetInstance(); TypeInfoMatchTarget target = null; using (TypeAttr attr = m_typeInfo.GetTypeAttr()) { TypeLibTypes.Interop.TYPEKIND kind = attr.typekind; target = new TypeInfoMatchTarget(m_typeInfo.GetContainingTypeLib(), m_typeInfo, kind); } AbstractActionManager actionManager = RuleEngine.GetActionManager(); List <Rule> addAttributeRules = m_info.Settings.m_ruleSet.GetRule( category, AddAttributeActionDef.GetInstance(), target); foreach (Rule rule in addAttributeRules) { AddAttributeAction addAttributeAction = rule.Action as AddAttributeAction; ConstructorInfo attributeCtor; byte[] blob; bool success = true; if (addAttributeAction.GetCustomAttribute(out attributeCtor, out blob)) { try { m_typeBuilder.SetCustomAttribute(attributeCtor, blob); } catch (Exception) { success = false; } } else { success = false; } if (!success) { string name = m_typeInfo.GetDocumentation(); string msg = Resource.FormatString("Wrn_AddCustomAttributeFailed", addAttributeAction.TypeName, name); m_info.ReportEvent(WarningCode.Wrn_AddCustomAttributeFailed, msg); } } } } catch (ReflectionTypeLoadException) { throw; // Fatal failure. Throw } catch (TlbImpResolveRefFailWrapperException) { throw; // Fatal failure. Throw } catch (TlbImpGeneralException) { throw; // Fatal failure. Throw } catch (Exception) { string name = String.Empty; if (m_typeInfo != null) { try { name = m_typeInfo.GetDocumentation(); } catch (Exception) { } } if (name != String.Empty) { string msg = Resource.FormatString("Wrn_InvalidTypeInfo", name); m_info.ReportEvent(WarningCode.Wrn_InvalidTypeInfo, msg); } else { string msg = Resource.FormatString("Wrn_InvalidTypeInfo_Unnamed"); m_info.ReportEvent(WarningCode.Wrn_InvalidTypeInfo_Unnamed, msg); } // When failure, try to create the type anyway if (m_typeBuilder != null) { m_type = m_typeBuilder.CreateType(); } } }