public static void ComputeDistance(out DistanceOutput output, out SimplexCache cache, DistanceInput input) { cache = default(SimplexCache); Simplex simplex = default(Simplex); simplex.ReadCache(ref cache, input.ProxyA, ref input.TransformA, input.ProxyB, ref input.TransformB); FixedArray3 <int> fixedArray = default(FixedArray3 <int>); FixedArray3 <int> fixedArray2 = default(FixedArray3 <int>); int i = 0; while (i < 20) { int count = simplex.Count; for (int j = 0; j < count; j++) { fixedArray[j] = simplex.V[j].IndexA; fixedArray2[j] = simplex.V[j].IndexB; } switch (simplex.Count) { case 1: break; case 2: simplex.Solve2(); break; case 3: simplex.Solve3(); break; default: Debug.Assert(false); break; } bool flag = simplex.Count == 3; if (flag) { break; } TSVector2 searchDirection = simplex.GetSearchDirection(); bool flag2 = searchDirection.LengthSquared() < Settings.EpsilonSqr; if (flag2) { break; } SimplexVertex simplexVertex = simplex.V[simplex.Count]; simplexVertex.IndexA = input.ProxyA.GetSupport(MathUtils.MulT(input.TransformA.q, -searchDirection)); simplexVertex.WA = MathUtils.Mul(ref input.TransformA, input.ProxyA.Vertices[simplexVertex.IndexA]); simplexVertex.IndexB = input.ProxyB.GetSupport(MathUtils.MulT(input.TransformB.q, searchDirection)); simplexVertex.WB = MathUtils.Mul(ref input.TransformB, input.ProxyB.Vertices[simplexVertex.IndexB]); simplexVertex.W = simplexVertex.WB - simplexVertex.WA; simplex.V[simplex.Count] = simplexVertex; i++; bool flag3 = false; for (int k = 0; k < count; k++) { bool flag4 = simplexVertex.IndexA == fixedArray[k] && simplexVertex.IndexB == fixedArray2[k]; if (flag4) { flag3 = true; break; } } bool flag5 = flag3; if (flag5) { break; } simplex.Count++; } simplex.GetWitnessPoints(out output.PointA, out output.PointB); output.Distance = (output.PointA - output.PointB).magnitude; output.Iterations = i; simplex.WriteCache(ref cache); bool useRadii = input.UseRadii; if (useRadii) { FP radius = input.ProxyA.Radius; FP radius2 = input.ProxyB.Radius; bool flag6 = output.Distance > radius + radius2 && output.Distance > Settings.Epsilon; if (flag6) { output.Distance -= radius + radius2; TSVector2 value = output.PointB - output.PointA; value.Normalize(); output.PointA += radius * value; output.PointB -= radius2 * value; } else { TSVector2 tSVector = 0.5f * (output.PointA + output.PointB); output.PointA = tSVector; output.PointB = tSVector; output.Distance = 0f; } } }
public static void ComputeDistance(out DistanceOutput output, out SimplexCache cache, DistanceInput input) { cache = new SimplexCache(); if (Settings.EnableDiagnostics) //FPE: We only gather diagnostics when enabled { ++GJKCalls; } // Initialize the simplex. Simplex simplex = new Simplex(); simplex.ReadCache(ref cache, input.ProxyA, ref input.TransformA, input.ProxyB, ref input.TransformB); // These store the vertices of the last simplex so that we // can check for duplicates and prevent cycling. FixedArray3 <int> saveA = new FixedArray3 <int>(); FixedArray3 <int> saveB = new FixedArray3 <int>(); //FP distanceSqr1 = Settings.MaxFP; // Main iteration loop. int iter = 0; while (iter < Settings.MaxGJKIterations) { // Copy simplex so we can identify duplicates. int saveCount = simplex.Count; for (int i = 0; i < saveCount; ++i) { saveA[i] = simplex.V[i].IndexA; saveB[i] = simplex.V[i].IndexB; } switch (simplex.Count) { case 1: break; case 2: simplex.Solve2(); break; case 3: simplex.Solve3(); break; default: Debug.Assert(false); break; } // If we have 3 points, then the origin is in the corresponding triangle. if (simplex.Count == 3) { break; } //FPE: This code was not used anyway. // Compute closest point. //Vector2 p = simplex.GetClosestPoint(); //FP distanceSqr2 = p.LengthSquared(); // Ensure progress //if (distanceSqr2 >= distanceSqr1) //{ //break; //} //distanceSqr1 = distanceSqr2; // Get search direction. TSVector2 d = simplex.GetSearchDirection(); // Ensure the search direction is numerically fit. if (d.LengthSquared() < Settings.EpsilonSqr) { // The origin is probably contained by a line segment // or triangle. Thus the shapes are overlapped. // We can't return zero here even though there may be overlap. // In case the simplex is a point, segment, or triangle it is difficult // to determine if the origin is contained in the CSO or very close to it. break; } // Compute a tentative new simplex vertex using support points. SimplexVertex vertex = simplex.V[simplex.Count]; vertex.IndexA = input.ProxyA.GetSupport(MathUtils.MulT(input.TransformA.q, -d)); vertex.WA = MathUtils.Mul(ref input.TransformA, input.ProxyA.Vertices[vertex.IndexA]); vertex.IndexB = input.ProxyB.GetSupport(MathUtils.MulT(input.TransformB.q, d)); vertex.WB = MathUtils.Mul(ref input.TransformB, input.ProxyB.Vertices[vertex.IndexB]); vertex.W = vertex.WB - vertex.WA; simplex.V[simplex.Count] = vertex; // Iteration count is equated to the number of support point calls. ++iter; if (Settings.EnableDiagnostics) //FPE: We only gather diagnostics when enabled { ++GJKIters; } // Check for duplicate support points. This is the main termination criteria. bool duplicate = false; for (int i = 0; i < saveCount; ++i) { if (vertex.IndexA == saveA[i] && vertex.IndexB == saveB[i]) { duplicate = true; break; } } // If we found a duplicate support point we must exit to avoid cycling. if (duplicate) { break; } // New vertex is ok and needed. ++simplex.Count; } if (Settings.EnableDiagnostics) //FPE: We only gather diagnostics when enabled { GJKMaxIters = Math.Max(GJKMaxIters, iter); } // Prepare output. simplex.GetWitnessPoints(out output.PointA, out output.PointB); output.Distance = (output.PointA - output.PointB).magnitude; output.Iterations = iter; // Cache the simplex. simplex.WriteCache(ref cache); // Apply radii if requested. if (input.UseRadii) { FP rA = input.ProxyA.Radius; FP rB = input.ProxyB.Radius; if (output.Distance > rA + rB && output.Distance > Settings.Epsilon) { // Shapes are still no overlapped. // Move the witness points to the outer surface. output.Distance -= rA + rB; TSVector2 normal = output.PointB - output.PointA; normal.Normalize(); output.PointA += rA * normal; output.PointB -= rB * normal; } else { // Shapes are overlapped when radii are considered. // Move the witness points to the middle. TSVector2 p = 0.5f * (output.PointA + output.PointB); output.PointA = p; output.PointB = p; output.Distance = 0.0f; } } }