예제 #1
0
        static void Main(string[] args)
        {
            Console.WriteLine("\nBegin neural network training demo");

            double[][] allData = new double[150][];
            allData[0] = new double[] { 5.1, 3.5, 1.4, 0.2, 0, 0, 1 };

            //Define remaining data here
            //Create train and test data

            int numInput  = 4;
            int numHidden = 7;
            int numOutput = 3;

            NeuralNetwork nn = new NeuralNetwork(numInput, numHidden, numOutput);

            int    maxEpochs    = 1000;
            double learningRate = 0.05;
            double momentum     = 0.01;

            nn.Train(trainData, maxEpochs, learningRate, momentum);

            Console.WriteLine("\nFirst 3 rows of training data: ");
            ShowMatrix(trainData, 3, 1, true);
            Console.WriteLine("First 3 rows of test data:");
            ShowMatrix(testData, 3, 1, true);
        }
예제 #2
0
        static void Main(string[] args)
        {
            Console.WriteLine("\nBegin neural network training demo");
            Console.WriteLine("\nData is the famous Iris flower set.");
            Console.WriteLine("Predict species from sepal length, width, petal length, width");
            Console.WriteLine("Iris setosa = 0 0 1, versicolor = 0 1 0, virginica = 1 0 0 \n");

            Console.WriteLine("Rad data resembles:");
            Console.WriteLine(" 5.1, 3.5, 1.4, 0.2, Iris setosa");
            Console.WriteLine(" 7.0, 3.2, 4.7, 1.4, Iris versicolor");
            Console.WriteLine(" 6.3, 3.3, 6.0, 2.5, Iris virginica");
            Console.WriteLine(" ......\n");

            #region Data for Input
            double[][] allData = new double[150][];
            allData[0]   = new double[] { 5.1, 3.5, 1.4, 0.2, 0, 0, 1 };
            allData[1]   = new double[] { 4.9, 3.0, 1.4, 0.2, 0, 0, 1 }; // Iris setosa = 0 0 1
            allData[2]   = new double[] { 4.7, 3.2, 1.3, 0.2, 0, 0, 1 }; // Iris versicolor = 0 1 0
            allData[3]   = new double[] { 4.6, 3.1, 1.5, 0.2, 0, 0, 1 }; // Iris virginica = 1 0 0
            allData[4]   = new double[] { 5.0, 3.6, 1.4, 0.2, 0, 0, 1 };
            allData[5]   = new double[] { 5.4, 3.9, 1.7, 0.4, 0, 0, 1 };
            allData[6]   = new double[] { 4.6, 3.4, 1.4, 0.3, 0, 0, 1 };
            allData[7]   = new double[] { 5.0, 3.4, 1.5, 0.2, 0, 0, 1 };
            allData[8]   = new double[] { 4.4, 2.9, 1.4, 0.2, 0, 0, 1 };
            allData[9]   = new double[] { 4.9, 3.1, 1.5, 0.1, 0, 0, 1 };
            allData[10]  = new double[] { 5.4, 3.7, 1.5, 0.2, 0, 0, 1 };
            allData[11]  = new double[] { 4.8, 3.4, 1.6, 0.2, 0, 0, 1 };
            allData[12]  = new double[] { 4.8, 3.0, 1.4, 0.1, 0, 0, 1 };
            allData[13]  = new double[] { 4.3, 3.0, 1.1, 0.1, 0, 0, 1 };
            allData[14]  = new double[] { 5.8, 4.0, 1.2, 0.2, 0, 0, 1 };
            allData[15]  = new double[] { 5.7, 4.4, 1.5, 0.4, 0, 0, 1 };
            allData[16]  = new double[] { 5.4, 3.9, 1.3, 0.4, 0, 0, 1 };
            allData[17]  = new double[] { 5.1, 3.5, 1.4, 0.3, 0, 0, 1 };
            allData[18]  = new double[] { 5.7, 3.8, 1.7, 0.3, 0, 0, 1 };
            allData[19]  = new double[] { 5.1, 3.8, 1.5, 0.3, 0, 0, 1 };
            allData[20]  = new double[] { 5.4, 3.4, 1.7, 0.2, 0, 0, 1 };
            allData[21]  = new double[] { 5.1, 3.7, 1.5, 0.4, 0, 0, 1 };
            allData[22]  = new double[] { 4.6, 3.6, 1.0, 0.2, 0, 0, 1 };
            allData[23]  = new double[] { 5.1, 3.3, 1.7, 0.5, 0, 0, 1 };
            allData[24]  = new double[] { 4.8, 3.4, 1.9, 0.2, 0, 0, 1 };
            allData[25]  = new double[] { 5.0, 3.0, 1.6, 0.2, 0, 0, 1 };
            allData[26]  = new double[] { 5.0, 3.4, 1.6, 0.4, 0, 0, 1 };
            allData[27]  = new double[] { 5.2, 3.5, 1.5, 0.2, 0, 0, 1 };
            allData[28]  = new double[] { 5.2, 3.4, 1.4, 0.2, 0, 0, 1 };
            allData[29]  = new double[] { 4.7, 3.2, 1.6, 0.2, 0, 0, 1 };
            allData[30]  = new double[] { 4.8, 3.1, 1.6, 0.2, 0, 0, 1 };
            allData[31]  = new double[] { 5.4, 3.4, 1.5, 0.4, 0, 0, 1 };
            allData[32]  = new double[] { 5.2, 4.1, 1.5, 0.1, 0, 0, 1 };
            allData[33]  = new double[] { 5.5, 4.2, 1.4, 0.2, 0, 0, 1 };
            allData[34]  = new double[] { 4.9, 3.1, 1.5, 0.1, 0, 0, 1 };
            allData[35]  = new double[] { 5.0, 3.2, 1.2, 0.2, 0, 0, 1 };
            allData[36]  = new double[] { 5.5, 3.5, 1.3, 0.2, 0, 0, 1 };
            allData[37]  = new double[] { 4.9, 3.1, 1.5, 0.1, 0, 0, 1 };
            allData[38]  = new double[] { 4.4, 3.0, 1.3, 0.2, 0, 0, 1 };
            allData[39]  = new double[] { 5.1, 3.4, 1.5, 0.2, 0, 0, 1 };
            allData[40]  = new double[] { 5.0, 3.5, 1.3, 0.3, 0, 0, 1 };
            allData[41]  = new double[] { 4.5, 2.3, 1.3, 0.3, 0, 0, 1 };
            allData[42]  = new double[] { 4.4, 3.2, 1.3, 0.2, 0, 0, 1 };
            allData[43]  = new double[] { 5.0, 3.5, 1.6, 0.6, 0, 0, 1 };
            allData[44]  = new double[] { 5.1, 3.8, 1.9, 0.4, 0, 0, 1 };
            allData[45]  = new double[] { 4.8, 3.0, 1.4, 0.3, 0, 0, 1 };
            allData[46]  = new double[] { 5.1, 3.8, 1.6, 0.2, 0, 0, 1 };
            allData[47]  = new double[] { 4.6, 3.2, 1.4, 0.2, 0, 0, 1 };
            allData[48]  = new double[] { 5.3, 3.7, 1.5, 0.2, 0, 0, 1 };
            allData[49]  = new double[] { 5.0, 3.3, 1.4, 0.2, 0, 0, 1 };
            allData[50]  = new double[] { 7.0, 3.2, 4.7, 1.4, 0, 1, 0 };
            allData[51]  = new double[] { 6.4, 3.2, 4.5, 1.5, 0, 1, 0 };
            allData[52]  = new double[] { 6.9, 3.1, 4.9, 1.5, 0, 1, 0 };
            allData[53]  = new double[] { 5.5, 2.3, 4.0, 1.3, 0, 1, 0 };
            allData[54]  = new double[] { 6.5, 2.8, 4.6, 1.5, 0, 1, 0 };
            allData[55]  = new double[] { 5.7, 2.8, 4.5, 1.3, 0, 1, 0 };
            allData[56]  = new double[] { 6.3, 3.3, 4.7, 1.6, 0, 1, 0 };
            allData[57]  = new double[] { 4.9, 2.4, 3.3, 1.0, 0, 1, 0 };
            allData[58]  = new double[] { 6.6, 2.9, 4.6, 1.3, 0, 1, 0 };
            allData[59]  = new double[] { 5.2, 2.7, 3.9, 1.4, 0, 1, 0 };
            allData[60]  = new double[] { 5.0, 2.0, 3.5, 1.0, 0, 1, 0 };
            allData[61]  = new double[] { 5.9, 3.0, 4.2, 1.5, 0, 1, 0 };
            allData[62]  = new double[] { 6.0, 2.2, 4.0, 1.0, 0, 1, 0 };
            allData[63]  = new double[] { 6.1, 2.9, 4.7, 1.4, 0, 1, 0 };
            allData[64]  = new double[] { 5.6, 2.9, 3.6, 1.3, 0, 1, 0 };
            allData[65]  = new double[] { 6.7, 3.1, 4.4, 1.4, 0, 1, 0 };
            allData[66]  = new double[] { 5.6, 3.0, 4.5, 1.5, 0, 1, 0 };
            allData[67]  = new double[] { 5.8, 2.7, 4.1, 1.0, 0, 1, 0 };
            allData[68]  = new double[] { 6.2, 2.2, 4.5, 1.5, 0, 1, 0 };
            allData[69]  = new double[] { 5.6, 2.5, 3.9, 1.1, 0, 1, 0 };
            allData[70]  = new double[] { 5.9, 3.2, 4.8, 1.8, 0, 1, 0 };
            allData[71]  = new double[] { 6.1, 2.8, 4.0, 1.3, 0, 1, 0 };
            allData[72]  = new double[] { 6.3, 2.5, 4.9, 1.5, 0, 1, 0 };
            allData[73]  = new double[] { 6.1, 2.8, 4.7, 1.2, 0, 1, 0 };
            allData[74]  = new double[] { 6.4, 2.9, 4.3, 1.3, 0, 1, 0 };
            allData[75]  = new double[] { 6.6, 3.0, 4.4, 1.4, 0, 1, 0 };
            allData[76]  = new double[] { 6.8, 2.8, 4.8, 1.4, 0, 1, 0 };
            allData[77]  = new double[] { 6.7, 3.0, 5.0, 1.7, 0, 1, 0 };
            allData[78]  = new double[] { 6.0, 2.9, 4.5, 1.5, 0, 1, 0 };
            allData[79]  = new double[] { 5.7, 2.6, 3.5, 1.0, 0, 1, 0 };
            allData[80]  = new double[] { 5.5, 2.4, 3.8, 1.1, 0, 1, 0 };
            allData[81]  = new double[] { 5.5, 2.4, 3.7, 1.0, 0, 1, 0 };
            allData[82]  = new double[] { 5.8, 2.7, 3.9, 1.2, 0, 1, 0 };
            allData[83]  = new double[] { 6.0, 2.7, 5.1, 1.6, 0, 1, 0 };
            allData[84]  = new double[] { 5.4, 3.0, 4.5, 1.5, 0, 1, 0 };
            allData[85]  = new double[] { 6.0, 3.4, 4.5, 1.6, 0, 1, 0 };
            allData[86]  = new double[] { 6.7, 3.1, 4.7, 1.5, 0, 1, 0 };
            allData[87]  = new double[] { 6.3, 2.3, 4.4, 1.3, 0, 1, 0 };
            allData[88]  = new double[] { 5.6, 3.0, 4.1, 1.3, 0, 1, 0 };
            allData[89]  = new double[] { 5.5, 2.5, 4.0, 1.3, 0, 1, 0 };
            allData[90]  = new double[] { 5.5, 2.6, 4.4, 1.2, 0, 1, 0 };
            allData[91]  = new double[] { 6.1, 3.0, 4.6, 1.4, 0, 1, 0 };
            allData[92]  = new double[] { 5.8, 2.6, 4.0, 1.2, 0, 1, 0 };
            allData[93]  = new double[] { 5.0, 2.3, 3.3, 1.0, 0, 1, 0 };
            allData[94]  = new double[] { 5.6, 2.7, 4.2, 1.3, 0, 1, 0 };
            allData[95]  = new double[] { 5.7, 3.0, 4.2, 1.2, 0, 1, 0 };
            allData[96]  = new double[] { 5.7, 2.9, 4.2, 1.3, 0, 1, 0 };
            allData[97]  = new double[] { 6.2, 2.9, 4.3, 1.3, 0, 1, 0 };
            allData[98]  = new double[] { 5.1, 2.5, 3.0, 1.1, 0, 1, 0 };
            allData[99]  = new double[] { 5.7, 2.8, 4.1, 1.3, 0, 1, 0 };
            allData[100] = new double[] { 6.3, 3.3, 6.0, 2.5, 1, 0, 0 };
            allData[101] = new double[] { 5.8, 2.7, 5.1, 1.9, 1, 0, 0 };
            allData[102] = new double[] { 7.1, 3.0, 5.9, 2.1, 1, 0, 0 };
            allData[103] = new double[] { 6.3, 2.9, 5.6, 1.8, 1, 0, 0 };
            allData[104] = new double[] { 6.5, 3.0, 5.8, 2.2, 1, 0, 0 };
            allData[105] = new double[] { 7.6, 3.0, 6.6, 2.1, 1, 0, 0 };
            allData[106] = new double[] { 4.9, 2.5, 4.5, 1.7, 1, 0, 0 };
            allData[107] = new double[] { 7.3, 2.9, 6.3, 1.8, 1, 0, 0 };
            allData[108] = new double[] { 6.7, 2.5, 5.8, 1.8, 1, 0, 0 };
            allData[109] = new double[] { 7.2, 3.6, 6.1, 2.5, 1, 0, 0 };
            allData[110] = new double[] { 6.5, 3.2, 5.1, 2.0, 1, 0, 0 };
            allData[111] = new double[] { 6.4, 2.7, 5.3, 1.9, 1, 0, 0 };
            allData[112] = new double[] { 6.8, 3.0, 5.5, 2.1, 1, 0, 0 };
            allData[113] = new double[] { 5.7, 2.5, 5.0, 2.0, 1, 0, 0 };
            allData[114] = new double[] { 5.8, 2.8, 5.1, 2.4, 1, 0, 0 };
            allData[115] = new double[] { 6.4, 3.2, 5.3, 2.3, 1, 0, 0 };
            allData[116] = new double[] { 6.5, 3.0, 5.5, 1.8, 1, 0, 0 };
            allData[117] = new double[] { 7.7, 3.8, 6.7, 2.2, 1, 0, 0 };
            allData[118] = new double[] { 7.7, 2.6, 6.9, 2.3, 1, 0, 0 };
            allData[119] = new double[] { 6.0, 2.2, 5.0, 1.5, 1, 0, 0 };
            allData[120] = new double[] { 6.9, 3.2, 5.7, 2.3, 1, 0, 0 };
            allData[121] = new double[] { 5.6, 2.8, 4.9, 2.0, 1, 0, 0 };
            allData[122] = new double[] { 7.7, 2.8, 6.7, 2.0, 1, 0, 0 };
            allData[123] = new double[] { 6.3, 2.7, 4.9, 1.8, 1, 0, 0 };
            allData[124] = new double[] { 6.7, 3.3, 5.7, 2.1, 1, 0, 0 };
            allData[125] = new double[] { 7.2, 3.2, 6.0, 1.8, 1, 0, 0 };
            allData[126] = new double[] { 6.2, 2.8, 4.8, 1.8, 1, 0, 0 };
            allData[127] = new double[] { 6.1, 3.0, 4.9, 1.8, 1, 0, 0 };
            allData[128] = new double[] { 6.4, 2.8, 5.6, 2.1, 1, 0, 0 };
            allData[129] = new double[] { 7.2, 3.0, 5.8, 1.6, 1, 0, 0 };
            allData[130] = new double[] { 7.4, 2.8, 6.1, 1.9, 1, 0, 0 };
            allData[131] = new double[] { 7.9, 3.8, 6.4, 2.0, 1, 0, 0 };
            allData[132] = new double[] { 6.4, 2.8, 5.6, 2.2, 1, 0, 0 };
            allData[133] = new double[] { 6.3, 2.8, 5.1, 1.5, 1, 0, 0 };
            allData[134] = new double[] { 6.1, 2.6, 5.6, 1.4, 1, 0, 0 };
            allData[135] = new double[] { 7.7, 3.0, 6.1, 2.3, 1, 0, 0 };
            allData[136] = new double[] { 6.3, 3.4, 5.6, 2.4, 1, 0, 0 };
            allData[137] = new double[] { 6.4, 3.1, 5.5, 1.8, 1, 0, 0 };
            allData[138] = new double[] { 6.0, 3.0, 4.8, 1.8, 1, 0, 0 };
            allData[139] = new double[] { 6.9, 3.1, 5.4, 2.1, 1, 0, 0 };
            allData[140] = new double[] { 6.7, 3.1, 5.6, 2.4, 1, 0, 0 };
            allData[141] = new double[] { 6.9, 3.1, 5.1, 2.3, 1, 0, 0 };
            allData[142] = new double[] { 5.8, 2.7, 5.1, 1.9, 1, 0, 0 };
            allData[143] = new double[] { 6.8, 3.2, 5.9, 2.3, 1, 0, 0 };
            allData[144] = new double[] { 6.7, 3.3, 5.7, 2.5, 1, 0, 0 };
            allData[145] = new double[] { 6.7, 3.0, 5.2, 2.3, 1, 0, 0 };
            allData[146] = new double[] { 6.3, 2.5, 5.0, 1.9, 1, 0, 0 };
            allData[147] = new double[] { 6.5, 3.0, 5.2, 2.0, 1, 0, 0 };
            allData[148] = new double[] { 6.2, 3.4, 5.4, 2.3, 1, 0, 0 };
            allData[149] = new double[] { 5.9, 3.0, 5.1, 1.8, 1, 0, 0 };
            #endregion
            //Define remaining data here
            //Create train and test data

            // string datafile = "..\\irisdata.txt
            // allData = LoadData(dataFile, 150, 7);

            Console.WriteLine("\nFirst 6 rows of the 150-imte data set:");
            ShowMatrix(allData, 6, 1, true);

            Console.WriteLine("Creating 80% training and 20% test data matrices");
            double[][] trainData = null;
            double[][] testData  = null;
            MakeTrainTest(allData, 72, out trainData, out testData); // seed = 72 gives a prety demo

            Console.WriteLine("\nFirst 3 rows of training data:");
            ShowMatrix(trainData, 3, 1, true);
            Console.WriteLine("First 3 rows of test dat:");
            ShowMatrix(testData, 3, 1, true);

            Console.WriteLine("\nCreating a 4-input, 7-hidden, 3-output neural network");
            Console.WriteLine("Hard-coded tanh function for input-to-hidden and softmax for ");
            Console.WriteLine("hidden-to-output activations");
            int numInput  = 4;
            int numHidden = 7;
            int numOutput = 3;

            NeuralNetwork nn = new NeuralNetwork(numInput, numHidden, numOutput);

            int    maxEpochs    = 1000;
            double learningRate = 0.05;
            double momentum     = 0.01;

            Console.WriteLine("Setting maxEpochs = " + maxEpochs + ", learnRate = " + learningRate + " , momentum" +
                              momentum);
            Console.WriteLine("Training has hard-coded mean squared error < 0.040 < stopping condition");

            Console.WriteLine("\nBeginning training using incremental back-propagation\n");
            nn.Train(trainData, maxEpochs, learningRate, momentum);
            Console.WriteLine("Training complete");

            double[] weights = nn.GetWeights();
            Console.WriteLine("Final neural network weights and bias values:");
            ShowVector(weights, 10, 3, true);

            double trainAcc = nn.Accuracy(trainData);
            Console.WriteLine("\nAccuracy on training data = " + trainAcc.ToString("F4"));

            double testAcc = nn.Accuracy(testData);
            Console.WriteLine("\nAccuracy on test data = " + testAcc.ToString("F4"));

            Console.WriteLine("\nEnd neural network training demo\n");
            Console.ReadLine();
        }