예제 #1
0
        private void button4_Click(object sender, EventArgs e)
        {
            Form1.sourceImages.Add(joined);
            map1.matched = true;
            map2.matched = true;

            List <ColorfulContourMap> cmap = ColorfulContourMap.getAllContourMap(joined, Form1.sourceImages.Count - 1);

            Form1.contourMaps.AddRange(cmap);



            Close();
        }
예제 #2
0
        private void button4_Click(object sender, EventArgs e)
        {
            if (Form1.sourceImages.Count != 0)
            {
                DisplayBestMatch bestMatchView = new DisplayBestMatch();
                QueueView        qv            = new QueueView();

                // extract the contour maps, send the result into queueview
                int index = 0;
                foreach (Image <Bgr, byte> image in Form1.sourceImages)
                {
                    List <ColorfulContourMap> cmap;
                    if (blackSelect.Checked == true)
                    {
                        cmap = ColorfulContourMap.getAllContourMap(image, index, 0);
                    }
                    else
                    {
                        cmap = ColorfulContourMap.getAllContourMap(image, index, 1);
                    }
                    Form1.contourMaps.AddRange(cmap);
                    index++;
                }
                if (blackSelect.Checked)
                {
                    Form1.BKG_WHITE = true;
                }
                else
                {
                    Form1.BKG_WHITE = false;
                }

                Hide();

                bestMatchView.Show();
                qv.Show();
            }
            else
            {
                MessageBox.Show("Please input at least one image.");
            }
        }
예제 #3
0
        // algorithm plot:
        // 1. Try edge match
        //      Find max confidence
        //      Try put them together
        // 2. Try color match
        //      Find max confidence
        //      Try put them together
        // 3. If still fail, that is from other page
        // 4. If success, find the best tweak
        // 5. Join the images according to the final parameters

        // the return value is how many pages should be in the original images
        private int bestMatchTwo()
        {
            int                pageCount     = 0;
            double             maxConfidence = 0.0;
            ColorfulContourMap map1          = new ColorfulContourMap();
            ColorfulContourMap map2          = new ColorfulContourMap();
            double             overlap       = 0.0;
            bool               matched       = false;
            // Double-thresholding algorithm (Worked for 5-piece precisely torned paper):
            // search for all unmatched pairs, calculate the confidence level ( fixed the problem with different results caused by different ordering )
            // reject all matches that has confidence less than 80 ( eliminate some of the false positives)
            // calculate the intersection for each matching pair
            // the pair with the lowest intersection is the best
            // if the intersection of the lowest pair is still greater than 5000, there are no match for the given fragments

            List <MatchMetricData> matchMetricData = new List <MatchMetricData>();

            // search for all unmatched pairs, calculate the confidence level
            // if the max confidence level is 0, that means the remaining pieces cannot be matched by turning angle
            // for this case, use the color matching algorithm


            // get the potential matching edges
            foreach (ColorfulContourMap cmap in Form1.contourMaps)
            {
                if (cmap.matched == false)
                {
                    foreach (ColorfulContourMap cmap2 in Form1.contourMaps)
                    {
                        if (cmap2.matched == false && cmap != cmap2)
                        {
                            Match  match      = DNAUtil.partialMatch(cmap.extractDNA(), cmap2.extractDNA());
                            double confidence = match.confidence;
                            matchMetricData.Add(new MatchMetricData {
                                map1 = cmap, map2 = cmap2, confident = confidence, dna1 = cmap.extractDNA(), dna2 = cmap2.extractDNA(), match = match
                            });
                            if (confidence > maxConfidence)
                            {
                                maxConfidence = confidence;
                                map1          = cmap;
                                map2          = cmap2;
                            }
                        }
                    }
                }
            }
            // if there are no pieces eligible for edge matching, the metric data should have all elements with confidence level 0
            // at this time, calculate the metrics for color matching
            // Double-thresholding algorithm works for color matching too
            if (matchMetricData.Count == 0 || matchMetricData.OrderBy(o => o.confident).Last().confident == 0)
            {
                foreach (ColorfulContourMap cmap in Form1.contourMaps)
                {
                    if (cmap.matched == false)
                    {
                        foreach (ColorfulContourMap cmap2 in Form1.contourMaps)
                        {
                            if (cmap2.matched == false && cmap != cmap2)
                            {
                                Match  match      = DNAUtil.partialColorMatch(cmap.extractDNA(), cmap2.extractDNA());
                                double confidence = match.confidence;
                                matchMetricData.Add(new MatchMetricData {
                                    map1 = cmap, map2 = cmap2, confident = confidence, dna1 = cmap.extractDNA(), dna2 = cmap2.extractDNA(), match = match
                                });
                                if (confidence > maxConfidence)
                                {
                                    maxConfidence = confidence;
                                    map1          = cmap;
                                    map2          = cmap2;
                                }
                            }
                        }
                    }
                }
            }

            // if there are still no matches, the process is done
            // It will consider the rest of the pieces from another page

            // 1st funnel: select the most potential matching edges
            matchMetricData = matchMetricData.Where(o => o.confident > Constants.MIN_CONFIDENCE).OrderBy(o => o.confident).Reverse().ToList();
            Console.WriteLine(maxConfidence);
            Console.WriteLine(map1.imageIndex);
            Console.WriteLine(map2.imageIndex);

            // calculate the intersection for each matching pair
            List <MatchMetricData> data2 = new List <MatchMetricData>();

            foreach (MatchMetricData m in matchMetricData)
            {
                Image <Bgr, byte> pic1      = Form1.sourceImages[m.map1.imageIndex].Clone();
                Image <Bgr, byte> pic2      = Form1.sourceImages[m.map2.imageIndex].Clone();
                Point             centroid1 = new Point();
                Point             centroid2 = new Point();
                double            angle     = 0.0;
                Match             edgeMatch = m.match;
                Transformation.transformation(m.dna1, m.dna2, ref edgeMatch, ref centroid1, ref centroid2, ref angle);
                angle = angle * 180 / Math.PI;
                angle = -angle;
                Console.WriteLine(centroid1.ToString());
                Console.WriteLine(centroid2.ToString());
                Console.WriteLine(angle);
                Image <Bgr, byte> mask1       = pic1.Clone();
                Image <Bgr, byte> mask2       = pic2.Clone();
                Image <Bgr, byte> joined      = pic1.Clone();
                Image <Bgr, byte> joined_mask = joined.Clone();
                ReturnColorImg    result      = Transformation.transformColor(pic1, mask1, pic2, mask2, joined, joined_mask, centroid1, centroid2, -angle + 180, new Point(0, 0), new Point(0, 0), Form1.BKG_WHITE);
                data2.Add(new MatchMetricData {
                    map1 = m.map1, map2 = m.map2, overlap = result.overlap, dna1 = m.dna1, dna2 = m.dna2, match = m.match, confident = m.confident
                });
            }
            if (data2.Count == 0)
            {
                MessageBox.Show("No match found");
                return(1); // add 1 to full image found count
            }
            // the pair with highest confidence with a valid intersection is the best
            // 2nd funnel: select only the matches that can actually match the picture together
            MatchMetricData MinOverlap = data2.OrderBy(o => o.overlap).First();

            if (MinOverlap.overlap < Constants.THRESHOLD)
            {
                Console.WriteLine("Map1 " + MinOverlap.map1.imageIndex);
                Console.WriteLine("Map2 " + MinOverlap.map2.imageIndex);
                Console.WriteLine("Overlap " + MinOverlap.overlap); // correct until this point
                // add the resulting image into the queue
                Image <Bgr, byte> pic1      = Form1.sourceImages[MinOverlap.map1.imageIndex].Clone();
                Image <Bgr, byte> pic2      = Form1.sourceImages[MinOverlap.map2.imageIndex].Clone();
                Point             centroid1 = new Point();
                Point             centroid2 = new Point();
                double            angle     = 0.0;
                Match             edgeMatch = MinOverlap.match;
                Transformation.transformation(MinOverlap.dna1, MinOverlap.dna2, ref edgeMatch, ref centroid1, ref centroid2, ref angle);
                // correct until this point
                angle = angle * 180 / Math.PI;
                angle = -angle;

                Image <Bgr, byte> mask1       = pic1.Clone();
                Image <Bgr, byte> mask2       = pic2.Clone();
                Image <Bgr, byte> joined      = pic1.Clone();
                Image <Bgr, byte> joined_mask = joined.Clone();


                // tweak
                ReturnColorImg bestResult = new ReturnColorImg();
                double         minOverlap = 999999;
                Console.WriteLine(centroid1.ToString());
                Console.WriteLine(centroid2.ToString()); // correct until this point

                // The tweaking is messing up with the result, I will just ignore this for a moment
                // the tweaking now works for 1-button matching
                // but the algorithm runs extremely slow ( still way faster than gluing the pieces :)
                for (int i = -2; i < 3; i++)
                {
                    for (int j = -2; j < 3; j++)
                    {
                        ReturnColorImg result = Transformation.transformColor(pic1, mask1, pic2, mask2, joined, joined_mask, centroid1, centroid2, -angle + 180, new Point(0, 0), new Point(i, j), Form1.BKG_WHITE);
                        if (result.overlap < minOverlap && result.success) // if the overlap is 0, that means the transformation is failed
                        {
                            bestResult = result;
                            minOverlap = result.overlap;
                        }
                        //DisplayImage dip = new DisplayImage(result.img, new Point(0,0), new Point(i, j), (int)result.overlap);
                        //dip.Show();
                    }
                }
                Form1.sourceImages.Add(bestResult.img);
                MinOverlap.map1.matched = true; // correct
                MinOverlap.map2.matched = true; // correct
                List <ColorfulContourMap> cmap = ColorfulContourMap.getAllContourMap(bestResult.img, Form1.sourceImages.Count - 1);
                Form1.contourMaps.AddRange(cmap);
                this.overlap += bestResult.overlap; // correct

                refresh();
                MessageBox.Show("Best Match Found.");
                return(0);
            }
            else
            {
                Console.WriteLine("Failed");
                return(1);
            }
        }