/// <summary> /// Returns a 1-D tensor of size \(\left\lfloor \frac{\text{end} - \text{start}}{\text{step}} \right\rfloor\) /// with values from the interval [start, end) taken with common difference /// step beginning from start. /// /// Note that non-integer step is subject to floating point rounding errors when /// comparing against end; to avoid inconsistency, we advise adding a small epsilon to end /// in such cases. /// /// \[\text{out}_{{i+1}} = \text{out}_{i} + \text{step} /// /// \] /// </summary> /// <param name="end"> /// the ending value for the set of points /// </param> /// <param name="@out"> /// the output tensor /// </param> /// <param name="dtype"> /// the desired data type of returned tensor. /// Default: if None, uses a global default (see torch.set_default_tensor_type()). If dtype is not given, infer the data type from the other input /// arguments. If any of start, end, or stop are floating-point, the /// dtype is inferred to be the default dtype, see /// get_default_dtype(). Otherwise, the dtype is inferred to /// be torch.int64. /// </param> /// <param name="layout"> /// the desired layout of returned Tensor. /// Default: torch.strided. /// </param> /// <param name="device"> /// the desired device of returned tensor. /// Default: if None, uses the current device for the default tensor type /// (see torch.set_default_tensor_type()). device will be the CPU /// for CPU tensor types and the current CUDA device for CUDA tensor types. /// </param> /// <param name="requires_grad"> /// If autograd should record operations on the /// returned tensor. Default: False. /// </param> public static Tensor arange(int end, Tensor @out = null, Dtype dtype = null, Layout layout = null, Device device = null, bool?requires_grad = false) => PyTorch.Instance.arange(0, end, 1, @out: @out, dtype: torch.int64, layout: layout, device: device, requires_grad: requires_grad);
public static Tensor <T> as_tensor <T>(T[] data, Dtype dtype = null, Device device = null) { return(tensor(data, dtype, device)); }
public static Tensor <T> tensor <T>(T[] data, Dtype dtype = null, Device device = null, bool?requires_grad = null, bool?pin_memory = null) => PyTorch.Instance.tensor(data, dtype: dtype, device: device, requires_grad: requires_grad, pin_memory: pin_memory);