private void button1_Click(object sender, RoutedEventArgs e) { try { TimeSeriGenerator <float> timeSeriGenerator = new TimeSeriGenerator <float>(); if (timeSeriGenerator.load(Int32.Parse(NumberOfInpTextBox.Text))) { timeSeriGenerator.generate().write2FileWithBrowse(); } } catch (Exception ex) { MessageBox.Show(ex.Message + "\n" + ex.StackTrace, "ERROR", MessageBoxButton.OK, MessageBoxImage.Error); } }
private double[] LoadData() { double[] data = null; try { int number = Int32.Parse(ColumnNumberTextBox.Text); var timeSeriGenerator = new TimeSeriGenerator <double>(); timeSeriGenerator.load(number); data = timeSeriGenerator.TimeSeri; } catch (Exception ex) { MessageBox.Show(ex.Message, "ERROR", MessageBoxButton.OK, MessageBoxImage.Error); } return(data); }
public void StartSVM(float[] data) { timeSeriGenerator = new TimeSeriGenerator <float>(); MyTimeSeri <float> myTimeSeri = timeSeriGenerator.generateWithThisData(data, 6); Matrix <float> trainData = new Matrix <float>(myTimeSeri.inputs); Matrix <float> trainClasses = new Matrix <float>(myTimeSeri.targets); svmModel = new SVM(); SVMParams p = new SVMParams(); p.KernelType = Emgu.CV.ML.MlEnum.SVM_KERNEL_TYPE.POLY; p.SVMType = Emgu.CV.ML.MlEnum.SVM_TYPE.EPS_SVR; // for regression p.C = 1; p.TermCrit = new MCvTermCriteria(100, 0.00001); p.Gamma = 1; p.Degree = 1; p.P = 1; p.Nu = 0.1; bool trained = svmModel.TrainAuto(trainData, trainClasses, null, null, p.MCvSVMParams, 10); }
public void Start() { try { svmWriter = new StreamWriter("Complex_Hybrid_SVMOutput.txt"); arimaLogger = new StreamWriter("Complex_Hybrid_ArimaGALog.txt"); hybridWriter = new StreamWriter(OUTPUT_FILE_NAME); #region Loading the training data and classes and test data and test classes TimeSeriGenerator <float> timeSeriGenerator = new TimeSeriGenerator <float>(); int numInp = 0; this.Dispatcher.Invoke(new Action(() => numInp = Int32.Parse(NumberOfInpTextBox.Text))); timeSeriGenerator.load(numInp); Dispatcher.Invoke(new Action(() => ActivityProgressBar.IsIndeterminate = true)); Dispatcher.Invoke(new Action(() => numberOfTests = Int32.Parse(OptimumTestTextBox.Text))); Dispatcher.Invoke(new Action(() => numberOfForecastTests = Int32.Parse(ForecastTestTextBox.Text))); myCategorizedTimeSeri = timeSeriGenerator.generate(numberOfTests, numberOfForecastTests); #endregion #region creating and training the svm model double minError = 9999999; SVM_KERNEL_TYPE bestKernelType = SVM_KERNEL_TYPE.LINEAR; double bestEps = 0.1; SVMParams p; Matrix <float> trainData = new Matrix <float>(myCategorizedTimeSeri.TrainInputs); Matrix <float> trainClasses = new Matrix <float>(myCategorizedTimeSeri.TrainTargets); Matrix <float> testData = new Matrix <float>(myCategorizedTimeSeri.TestInputs); Matrix <float> testClasses = new Matrix <float>(myCategorizedTimeSeri.TestTargets); foreach (SVM_KERNEL_TYPE tp in Enum.GetValues(typeof(SVM_KERNEL_TYPE))) { for (double eps = 0.1; eps >= 0.00001; eps *= 0.1) { using (SVM model = new SVM()) { p = new SVMParams(); p.KernelType = tp; p.SVMType = SVM_TYPE.EPS_SVR; // for regression p.C = 1; p.TermCrit = new MCvTermCriteria(100, eps); p.Gamma = 1; p.Degree = 1; p.P = 1; p.Nu = 0.1; bool trained = model.TrainAuto(trainData, trainClasses, null, null, p.MCvSVMParams, 10); double error = getSumError(model, testData, testClasses); if (trained && minError > error) { minError = error; bestEps = eps; bestKernelType = tp; } } } } Matrix <float> trainDataWithGATest = new Matrix <float>(myCategorizedTimeSeri.getTrainWithTestInputs()); Matrix <float> trainClassesWithGATest = new Matrix <float>(myCategorizedTimeSeri.getTrainWithTestTargets()); svmModel = new SVM(); p = new SVMParams(); p.KernelType = bestKernelType; p.SVMType = Emgu.CV.ML.MlEnum.SVM_TYPE.EPS_SVR; // for regression p.C = 1; p.TermCrit = new MCvTermCriteria(100, bestEps); p.Gamma = 1; p.Degree = 1; p.P = 1; p.Nu = 0.1; bool _trained = svmModel.TrainAuto(trainDataWithGATest, trainClassesWithGATest, null, null, p.MCvSVMParams, 10); List <float> Et = getResidual(trainDataWithGATest, trainClassesWithGATest); svmWriter.Flush(); svmWriter.Close(); int bestD = StartArima(Et.ToArray()); List <float> Zt = new List <float>(); float mu = Et.Average(); if (bestD == 0) { for (int i = 0; i < Et.Count; i++) { Zt.Add(Et[i] - mu); } } else if (bestD == 1) { Zt.Add(0); for (int i = 1; i < Et.Count; i++) { Zt.Add(Et[i] - Et[i - 1] - mu); } } else //else if (bestD == 2) << CHECK HERE >> { Zt.Add(0); Zt.Add(0); for (int i = 2; i < Et.Count; i++) { Zt.Add(Et[i] - 2 * Et[i - 1] + Et[i - 2] - mu); } } Pair <int> bestAB = CreateComplexHybridModel(Et.ToArray(), Zt.ToArray()); MessageBox.Show(bestAB.First + " , " + bestAB.Second, "INJAAAAAAAAAAAAAAAAA", MessageBoxButton.OK, MessageBoxImage.Asterisk); // now our complex hybrid model is created double minErr = SVMComplexModelForBestModel(bestAB.First, bestAB.Second, Et.ToArray(), Zt.ToArray()); MessageBox.Show("MinError In Training => " + minErr); double mse = 0; double errorPercent = 0; double sumTargets = 0; List <float> results = new List <float>(); Matrix <float> testIn = new Matrix <float>(myCategorizedTimeSeri.ForecastTestInputs); Queue <float> EtQueue = new Queue <float>(); Queue <float> ZtQueue = new Queue <float>(); for (int i = 0; i < bestAB.First; i++) { EtQueue.Enqueue(Et[Et.Count - bestAB.First + i]); } for (int i = 0; i < bestAB.Second; i++) { ZtQueue.Enqueue(Zt[Zt.Count - bestAB.Second + i]); } for (int i = 0; i < numberOfForecastTests; i++) { float Lt = svmModel.Predict(testIn.GetRow(i)); float[] inpTest = new float[bestAB.First + bestAB.Second + 1]; float[] EQArray = EtQueue.ToArray(); float[] ZQArray = ZtQueue.ToArray(); int l = 0; for (int j = 0; j < bestAB.First; j++, l++) { inpTest[l] = EQArray[j]; } inpTest[l++] = Lt; for (int j = 0; j < bestAB.Second; j++, l++) { inpTest[l] = ZQArray[j]; } float result = svmModelHybrid.Predict(new Matrix <float>(inpTest)); results.Add(result); hybridWriter.WriteLine(result); float target = myCategorizedTimeSeri.TestTargets[i]; //mse += Math.Pow(target - result, 2); //errorPercent += Math.Abs(target - result); //sumTargets += Math.Abs(target); // preparing for next use in this for loop float resi = target - Lt; // float resi = target - result; << CHECK HERE IMPORTANT >> Et.Add(resi); EtQueue.Dequeue(); EtQueue.Enqueue(resi); ZtQueue.Dequeue(); mu = Et.Average(); if (bestD == 0) { ZtQueue.Enqueue(EQArray[EQArray.Length - 1] - mu); } else if (bestD == 1) { ZtQueue.Enqueue(EQArray[EQArray.Length - 1] - EQArray[EQArray.Length - 2] - mu); } else //else if (bestD == 2) << CHECK HERE >> { ZtQueue.Enqueue(EQArray[EQArray.Length - 1] - 2 * EQArray[EQArray.Length - 2] + EQArray[EQArray.Length - 3] - mu); } } //mse /= numberOfForecastTests; //hybridWriter.WriteLine("\n\nMSE => " + mse); //errorPercent /= sumTargets; //hybridWriter.WriteLine("\n\nERROR% => " + errorPercent*100); double _mse = MyErrorParameters.MSE(results.ToArray(), myCategorizedTimeSeri.ForecastTestTargets); double _errorPercent = MyErrorParameters.ERROR_Percent(results.ToArray(), myCategorizedTimeSeri.ForecastTestTargets); hybridWriter.WriteLine("\n\n\nMSE & ERROR% are =>\n\n{0} {1}", _mse, _errorPercent); hybridWriter.Flush(); hybridWriter.Close(); MessageBox.Show( String.Format( "Complex Hybrid Model Created File {0} For Output Successfully Now , Please Check It Out .", OUTPUT_FILE_NAME), "Hybrid SVM Arima Done", MessageBoxButton.OK, MessageBoxImage.Information); #endregion } catch (Exception ex) { MessageBox.Show(ex.Message + "\n\n" + ex.StackTrace, "ERROR", MessageBoxButton.OK, MessageBoxImage.Error); } }
void Start() { var Et = new List <double>(); var Zt = new List <double>(); var Lt = new List <double>(); timeSeriGenerator = new TimeSeriGenerator <double>(); arimaLogger = new StreamWriter("Best_Hybrid_ArimaGALog.txt"); int numInp = 0; this.Dispatcher.Invoke(new Action(() => numInp = Int32.Parse(NumberOfInpTextBox.Text))); timeSeriGenerator.load(numInp); Dispatcher.Invoke(new Action(() => ActivityProgressBar.IsIndeterminate = true)); Dispatcher.Invoke(new Action(() => numberOfTests = Int32.Parse(OptimumTestTextBox.Text))); Dispatcher.Invoke(new Action(() => numberOfForecastTests = Int32.Parse(ForecastTestTextBox.Text))); MyTimeSeriForBestHybrid <double> myTimeSeriForBestHybrid = timeSeriGenerator.generateForBestHybrid(numberOfForecastTests); //maxGAIteretionInArima = 1000; //var train = new double[timeSeriGenerator.TimeSeri.Length - 5]; //var test = new double[5]; //for (int i = 0; i < train.Length; i++) //{ // train[i] = timeSeriGenerator.TimeSeri[i]; //} //for (int i = train.Length, j = 0; i < timeSeriGenerator.TimeSeri.Length; i++, j++) //{ // test[j] = timeSeriGenerator.TimeSeri[i]; //} //ArimaGA aga=new ArimaGA(); //aga.StartArima(train); //NumericalVariable timeSeriii = new NumericalVariable("timeSeriii", train); //arimaModel = new ArimaModel(timeSeriii, aga.bestP, aga.bestD, aga.bestQ); //arimaModel.Compute(); //var fv2 = arimaModel.Forecast(numberOfForecastTests); //double ea2 = MyErrorParameters.ERROR_Percent(fv2.ToArray(), test);) for (int i = 0; i < myTimeSeriForBestHybrid.part2.Count; i++) { StartArima(myTimeSeriForBestHybrid.part1.ToArray()); //// converting to double[] //double[] db = new double[myTimeSeriForBestHybrid.part1.Count]; //for (int j = 0; j < db.Length; j++) //{ // db[j] = myTimeSeriForBestHybrid.part1.ToArray()[j]; //} NumericalVariable timeSerii = new NumericalVariable("timeSerii", myTimeSeriForBestHybrid.part1.ToArray()); arimaModel = new ArimaModel(timeSerii, myBestP, myBestD, myBestQ); arimaModel.Compute(); var res = arimaModel.Forecast(1); float lt = (float)res[0]; Lt.Add(lt); double target = myTimeSeriForBestHybrid.part2[i]; double e = lt - target; Et.Add(e); myTimeSeriForBestHybrid.part1.Add(target); double mu = myTimeSeriForBestHybrid.part1.Average(); if (myBestD == 0) { Zt.Add(myTimeSeriForBestHybrid.part1[myTimeSeriForBestHybrid.part1.Count - 1] - mu); } else if (myBestD == 1) { Zt.Add(myTimeSeriForBestHybrid.part1[myTimeSeriForBestHybrid.part1.Count - 1] - myTimeSeriForBestHybrid.part1[myTimeSeriForBestHybrid.part1.Count - 2] - mu); } else { Zt.Add(myTimeSeriForBestHybrid.part1[myTimeSeriForBestHybrid.part1.Count - 1] - 2 * myTimeSeriForBestHybrid.part1[myTimeSeriForBestHybrid.part1.Count - 2] + myTimeSeriForBestHybrid.part1[myTimeSeriForBestHybrid.part1.Count - 3] - mu); } } ArimaModel EtArimaModel = new ArimaGA().GetBestModel(Et.ToArray()); ArimaModel ZtArimaModel = new ArimaGA().GetBestModel(Zt.ToArray()); int a = 0; SVM svm = new SVM(); //TimeSeriGenerator<double> gen = new TimeSeriGenerator<double>(); //gen.NumberOfInputVariables = Int32.Parse(NumberOfInpTextBox.Text); //gen.TimeSeri = Et.ToArray(); //var EtTimeSeries = gen.generate(); //gen = new TimeSeriGenerator<double>(); //gen.NumberOfInputVariables = Int32.Parse(NumberOfInpTextBox.Text); //gen.TimeSeri = Zt.ToArray(); //var ZtTimeSeries = gen.generate(); //// biaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa Pair <int> bestAB = CreateComplexHybridModel(Et.ToArray(), Lt.ToArray(), Zt.ToArray()); double minErr = SVMComplexModelForBestModel(bestAB.First, bestAB.Second, Et.ToArray(), Lt.ToArray(), Zt.ToArray()); MessageBox.Show(bestAB.First + " , " + bestAB.Second + "\nMinError In Training Is => " + minErr, "Now Best M & N Found", MessageBoxButton.OK, MessageBoxImage.Asterisk); // --------------------------------- now our complex hybrid model is created ----------------------------------------------------------------- double mse = 0; double errorPercent = 0; double sumTargets = 0; if (myTimeSeriForBestHybrid.part1.Count != timeSeriGenerator.TimeSeri.Length - numberOfForecastTests) { MessageBox.Show("Input For Arima Model Is Not Completed", "ERROR", MessageBoxButton.OK, MessageBoxImage.Error); } // << CHECK HERE >> (FOR CHECKING PURPOSE ONLY , COMMENT HERE LATER) var forecastedVector = arimaModel.Forecast(numberOfForecastTests); double eoa = MyErrorParameters.ERROR_Percent(forecastedVector.ToArray(), myTimeSeriForBestHybrid.testCases.ToArray()); MessageBox.Show("Error Of Arima Is => " + eoa, "Arima Error", MessageBoxButton.OK, MessageBoxImage.Information); //maxGAIteretionInArima = 1000; //StartArima(myTimeSeriForBestHybrid.part1.ToArray()); //double[] dbb = new double[myTimeSeriForBestHybrid.part1.Count]; //for (int j = 0; j < dbb.Length; j++) //{ // dbb[j] = myTimeSeriForBestHybrid.part1.ToArray()[j]; //} //NumericalVariable timeSeriTest = new NumericalVariable("timeSerii", dbb); //arimaModel = new ArimaModel(timeSeriTest, myBestP, myBestD, myBestQ); //arimaModel.Compute(); StreamWriter hybridWriter = new StreamWriter(OUTPUT_FILE_NAME); List <double> results = new List <double>(); //double errorOfArima = MyErrorParameters.ERROR_Percent(forcastedVector.ToArray(), myTimeSeriForBestHybrid.testCases.ToArray()); //MessageBox.Show("Error Of Arima Is => " + errorOfArima, "Arima Error", MessageBoxButton.OK, // MessageBoxImage.Information); // --------------------------------------------------------------- int numOfInp = bestAB.First + bestAB.Second + 1; int rows = Et.Count - Math.Max(bestAB.First, bestAB.Second); float[,] inps = new float[rows, numOfInp]; double[] targs = new double[rows]; int y = bestAB.First; int z = bestAB.Second; int ll = 0; for (int o = 0; o < rows; o++) { if (y > z) { for (int j = 0; j < y; j++) { inps[o, j] = (float)Et[ll + j]; } inps[o, y] = (float)Lt[ll + y]; for (int j = 0; j < z; j++) { inps[o, y + j + 1] = (float)Zt[ll + y - z + j]; } targs[o] = timeSeriGenerator.TimeSeri[ll + y]; } else { for (int j = 0; j < y; j++) { inps[o, j] = (float)Et[ll + z - y + j]; } inps[o, y] = (float)Lt[ll + z]; for (int j = 0; j < z; j++) { inps[o, j + y + 1] = (float)Zt[ll + j]; } targs[o] = timeSeriGenerator.TimeSeri[ll + z]; } ll++; } float[,] trainInputs = new float[rows - numberOfTests, numOfInp]; float[] trainTargets = new float[rows - numberOfTests]; float[,] testInputs = new float[numberOfTests, numOfInp]; float[] testTargets = new float[numberOfTests]; int t = 0; for (; t < rows - numberOfTests; t++) { for (int j = 0; j < numOfInp; j++) { trainInputs[t, j] = inps[t, j]; } trainTargets[t] = (float)targs[t]; } for (int o = 0; t < rows; o++, t++) { for (int j = 0; j < numOfInp; j++) { testInputs[o, j] = inps[t, j]; } testTargets[o] = (float)targs[t]; } svmModelHybrid = new SVM(); SVM_KERNEL_TYPE bestKernelType = SVM_KERNEL_TYPE.RBF; double bestEps = 0.001; SVMParams p; Matrix <float> trainData = new Matrix <float>(trainInputs); Matrix <float> trainClasses = new Matrix <float>(trainTargets); p = new SVMParams(); p.KernelType = bestKernelType; p.SVMType = Emgu.CV.ML.MlEnum.SVM_TYPE.EPS_SVR; // for regression p.C = 1; p.TermCrit = new MCvTermCriteria(100, bestEps); p.Gamma = 1; p.Degree = 1; p.P = 1; p.Nu = 0.1; bool _trained = svmModelHybrid.TrainAuto(trainData, trainClasses, null, null, p.MCvSVMParams, 10); // --------------------------------------------------------------- for (int i = 0; i < numberOfForecastTests; i++) { float[,] inpTest = new float[bestAB.First + bestAB.Second + 1, 1]; int l = 0; for (int j = 0; j < bestAB.First; j++, l++) { inpTest[l, 0] = (float)Et[Et.Count - bestAB.First + j]; } inpTest[l++, 0] = (float)forecastedVector[i]; for (int j = 0; j < bestAB.Second; j++, l++) { inpTest[l, 0] = (float)Zt[Zt.Count - bestAB.Second + j]; } // injaaaaaaaaaaaaaaaaaaaa float result = svmModelHybrid.Predict(new Matrix <float>(inpTest)); results.Add(result); hybridWriter.WriteLine(result); double target = myTimeSeriForBestHybrid.testCases[i]; // preparing for next use in this for loop double resi = target - (float)forecastedVector[i]; // float resi = target - result; << CHECK HERE IMPORTANT >> Et.Add(resi); myTimeSeriForBestHybrid.part1.Add(target); double mu = myTimeSeriForBestHybrid.part1.Average(); if (myBestD == 0) { Zt.Add(myTimeSeriForBestHybrid.part1[myTimeSeriForBestHybrid.part1.Count - 1] - mu); } else if (myBestD == 1) { Zt.Add(myTimeSeriForBestHybrid.part1[myTimeSeriForBestHybrid.part1.Count - 1] - myTimeSeriForBestHybrid.part1[myTimeSeriForBestHybrid.part1.Count - 2] - mu); } else //else if (bestD == 2) << CHECK HERE >> { Zt.Add(myTimeSeriForBestHybrid.part1[myTimeSeriForBestHybrid.part1.Count - 1] - 2 * myTimeSeriForBestHybrid.part1[myTimeSeriForBestHybrid.part1.Count - 2] + myTimeSeriForBestHybrid.part1[myTimeSeriForBestHybrid.part1.Count - 3] - mu); } } double _mse = MyErrorParameters.MSE(results.ToArray(), myTimeSeriForBestHybrid.testCases.ToArray()); double _errorPercent = MyErrorParameters.ERROR_Percent(results.ToArray(), myTimeSeriForBestHybrid.testCases.ToArray()); hybridWriter.WriteLine("\n\n\nMSE & ERROR% are =>\n\n{0} {1}", _mse, _errorPercent); hybridWriter.Flush(); hybridWriter.Close(); MessageBox.Show( String.Format( "Complex Hybrid Model Created File {0} For Output Successfully Now , Please Check It Out .", OUTPUT_FILE_NAME), "Hybrid SVM Arima Done", MessageBoxButton.OK, MessageBoxImage.Information); }