// copy as much as possible from the sliding window to the output area internal int inflate_flush(ZStream z, int r) { int n; int p; int q; // local copies of source and destination pointers p = z.next_out_index; q = read; // compute number of bytes to copy as far as end of window n = (int)((q <= write?write:end) - q); if (n > z.avail_out) { n = z.avail_out; } if (n != 0 && r == Z_BUF_ERROR) { r = Z_OK; } // update counters z.avail_out -= n; z.total_out += n; // update check information if (checkfn != null) { z.adler = check = z._adler.adler32(check, window, q, n); } // copy as far as end of window Array.Copy(window, q, z.next_out, p, n); p += n; q += n; // see if more to copy at beginning of window if (q == end) { // wrap pointers q = 0; if (write == end) { write = 0; } // compute bytes to copy n = write - q; if (n > z.avail_out) { n = z.avail_out; } if (n != 0 && r == Z_BUF_ERROR) { r = Z_OK; } // update counters z.avail_out -= n; z.total_out += n; // update check information if (checkfn != null) { z.adler = check = z._adler.adler32(check, window, q, n); } // copy Array.Copy(window, q, z.next_out, p, n); p += n; q += n; } // update pointers z.next_out_index = p; read = q; // done return(r); }
internal int proc(ZStream z, int r) { int t; // temporary storage int b; // bit buffer int k; // bits in bit buffer int p; // input data pointer int n; // bytes available there int q; // output window write pointer int m; // bytes to end of window or read pointer // copy input/output information to locals (UPDATE macro restores) { p = z.next_in_index; n = z.avail_in; b = bitb; k = bitk; } { q = write; m = (int)(q < read?read - q - 1:end - q); } // process input based on current state while (true) { switch (mode) { case TYPE: while (k < (3)) { if (n != 0) { r = Z_OK; } else { bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return(inflate_flush(z, r)); } ; n--; b |= (z.next_in[p++] & 0xff) << k; k += 8; } t = (int)(b & 7); last = t & 1; switch (SupportClass.URShift(t, 1)) { case 0: // stored { b = SupportClass.URShift(b, (3)); k -= (3); } t = k & 7; // go to byte boundary { b = SupportClass.URShift(b, (t)); k -= (t); } mode = LENS; // get length of stored block break; case 1: // fixed { int[] bl = new int[1]; int[] bd = new int[1]; int[][] tl = new int[1][]; int[][] td = new int[1][]; InfTree.inflate_trees_fixed(bl, bd, tl, td, z); codes = new InfCodes(bl[0], bd[0], tl[0], td[0], z); } { b = SupportClass.URShift(b, (3)); k -= (3); } mode = CODES; break; case 2: // dynamic { b = SupportClass.URShift(b, (3)); k -= (3); } mode = TABLE; break; case 3: // illegal { b = SupportClass.URShift(b, (3)); k -= (3); } mode = BAD; z.msg = "invalid block type"; r = Z_DATA_ERROR; bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return(inflate_flush(z, r)); } break; case LENS: while (k < (32)) { if (n != 0) { r = Z_OK; } else { bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return(inflate_flush(z, r)); } ; n--; b |= (z.next_in[p++] & 0xff) << k; k += 8; } if (((SupportClass.URShift((~b), 16)) & 0xffff) != (b & 0xffff)) { mode = BAD; z.msg = "invalid stored block lengths"; r = Z_DATA_ERROR; bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return(inflate_flush(z, r)); } left = (b & 0xffff); b = k = 0; // dump bits mode = left != 0?STORED:(last != 0?DRY:TYPE); break; case STORED: if (n == 0) { bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return(inflate_flush(z, r)); } if (m == 0) { if (q == end && read != 0) { q = 0; m = (int)(q < read?read - q - 1:end - q); } if (m == 0) { write = q; r = inflate_flush(z, r); q = write; m = (int)(q < read?read - q - 1:end - q); if (q == end && read != 0) { q = 0; m = (int)(q < read?read - q - 1:end - q); } if (m == 0) { bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return(inflate_flush(z, r)); } } } r = Z_OK; t = left; if (t > n) { t = n; } if (t > m) { t = m; } Array.Copy(z.next_in, p, window, q, t); p += t; n -= t; q += t; m -= t; if ((left -= t) != 0) { break; } mode = last != 0?DRY:TYPE; break; case TABLE: while (k < (14)) { if (n != 0) { r = Z_OK; } else { bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return(inflate_flush(z, r)); } ; n--; b |= (z.next_in[p++] & 0xff) << k; k += 8; } table = t = (b & 0x3fff); if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29) { mode = BAD; z.msg = "too many length or distance symbols"; r = Z_DATA_ERROR; bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return(inflate_flush(z, r)); } t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f); blens = new int[t]; { b = SupportClass.URShift(b, (14)); k -= (14); } index = 0; mode = BTREE; goto case BTREE; case BTREE: while (index < 4 + (SupportClass.URShift(table, 10))) { while (k < (3)) { if (n != 0) { r = Z_OK; } else { bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return(inflate_flush(z, r)); } ; n--; b |= (z.next_in[p++] & 0xff) << k; k += 8; } blens[border[index++]] = b & 7; { b = SupportClass.URShift(b, (3)); k -= (3); } } while (index < 19) { blens[border[index++]] = 0; } bb[0] = 7; t = InfTree.inflate_trees_bits(blens, bb, tb, hufts, z); if (t != Z_OK) { r = t; if (r == Z_DATA_ERROR) { blens = null; mode = BAD; } bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return(inflate_flush(z, r)); } index = 0; mode = DTREE; goto case DTREE; case DTREE: while (true) { t = table; if (!(index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))) { break; } int i, j, c; t = bb[0]; while (k < (t)) { if (n != 0) { r = Z_OK; } else { bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return(inflate_flush(z, r)); } ; n--; b |= (z.next_in[p++] & 0xff) << k; k += 8; } if (tb[0] == -1) { //System.err.println("null..."); } t = hufts[(tb[0] + (b & inflate_mask[t])) * 3 + 1]; c = hufts[(tb[0] + (b & inflate_mask[t])) * 3 + 2]; if (c < 16) { b = SupportClass.URShift(b, (t)); k -= (t); blens[index++] = c; } else { // c == 16..18 i = c == 18?7:c - 14; j = c == 18?11:3; while (k < (t + i)) { if (n != 0) { r = Z_OK; } else { bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return(inflate_flush(z, r)); } ; n--; b |= (z.next_in[p++] & 0xff) << k; k += 8; } b = SupportClass.URShift(b, (t)); k -= (t); j += (b & inflate_mask[i]); b = SupportClass.URShift(b, (i)); k -= (i); i = index; t = table; if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) || (c == 16 && i < 1)) { blens = null; mode = BAD; z.msg = "invalid bit length repeat"; r = Z_DATA_ERROR; bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return(inflate_flush(z, r)); } c = c == 16?blens[i - 1]:0; do { blens[i++] = c; }while (--j != 0); index = i; } } tb[0] = -1; { int[] bl = new int[1]; int[] bd = new int[1]; int[] tl = new int[1]; int[] td = new int[1]; bl[0] = 9; // must be <= 9 for lookahead assumptions bd[0] = 6; // must be <= 9 for lookahead assumptions t = table; t = InfTree.inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f), blens, bl, bd, tl, td, hufts, z); if (t != Z_OK) { if (t == Z_DATA_ERROR) { blens = null; mode = BAD; } r = t; bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return(inflate_flush(z, r)); } codes = new InfCodes(bl[0], bd[0], hufts, tl[0], hufts, td[0], z); } blens = null; mode = CODES; goto case CODES; case CODES: bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; if ((r = codes.proc(this, z, r)) != Z_STREAM_END) { return(inflate_flush(z, r)); } r = Z_OK; codes.free(z); p = z.next_in_index; n = z.avail_in; b = bitb; k = bitk; q = write; m = (int)(q < read?read - q - 1:end - q); if (last == 0) { mode = TYPE; break; } mode = DRY; goto case DRY; case DRY: write = q; r = inflate_flush(z, r); q = write; m = (int)(q < read?read - q - 1:end - q); if (read != write) { bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return(inflate_flush(z, r)); } mode = DONE; goto case DONE; case DONE: r = Z_STREAM_END; bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return(inflate_flush(z, r)); case BAD: r = Z_DATA_ERROR; bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return(inflate_flush(z, r)); default: r = Z_STREAM_ERROR; bitb = b; bitk = k; z.avail_in = n; z.total_in += p - z.next_in_index; z.next_in_index = p; write = q; return(inflate_flush(z, r)); } } }