// Sequential position solver for position constraints. public bool SolveTOIPositionConstraints(int toiIndexA, int toiIndexB) { FP minSeparation = 0.0f; for (int i = 0; i < _count; ++i) { ContactPositionConstraint pc = _positionConstraints[i]; int indexA = pc.indexA; int indexB = pc.indexB; TSVector2 localCenterA = pc.localCenterA; TSVector2 localCenterB = pc.localCenterB; int pointCount = pc.pointCount; FP mA = 0.0f; FP iA = 0.0f; if (indexA == toiIndexA || indexA == toiIndexB) { mA = pc.invMassA; iA = pc.invIA; } FP mB = 0.0f; FP iB = 0.0f; if (indexB == toiIndexA || indexB == toiIndexB) { mB = pc.invMassB; iB = pc.invIB; } TSVector2 cA = _positions[indexA].c; FP aA = _positions[indexA].a; TSVector2 cB = _positions[indexB].c; FP aB = _positions[indexB].a; // Solve normal constraints for (int j = 0; j < pointCount; ++j) { Transform xfA = new Transform(); Transform xfB = new Transform(); xfA.q.Set(aA); xfB.q.Set(aB); xfA.p = cA - MathUtils.Mul(xfA.q, localCenterA); xfB.p = cB - MathUtils.Mul(xfB.q, localCenterB); TSVector2 normal; TSVector2 point; FP separation; PositionSolverManifold.Initialize(pc, xfA, xfB, j, out normal, out point, out separation); TSVector2 rA = point - cA; TSVector2 rB = point - cB; // Track max constraint error. minSeparation = SyncFrame.TSMath.Min(minSeparation, separation); // Prevent large corrections and allow slop. FP C = MathUtils.Clamp(Settings.Baumgarte * (separation + Settings.LinearSlop), -Settings.MaxLinearCorrection, 0.0f); // Compute the effective mass. FP rnA = MathUtils.Cross(rA, normal); FP rnB = MathUtils.Cross(rB, normal); FP K = mA + mB + iA * rnA * rnA + iB * rnB * rnB; // Compute normal impulse FP impulse = K > 0.0f ? -C / K : 0.0f; TSVector2 P = impulse * normal; cA -= mA * P; aA -= iA * MathUtils.Cross(rA, P); cB += mB * P; aB += iB * MathUtils.Cross(rB, P); } _positions[indexA].c = cA; _positions[indexA].a = aA; _positions[indexB].c = cB; _positions[indexB].a = aB; } // We can't expect minSpeparation >= -b2_linearSlop because we don't // push the separation above -b2_linearSlop. return(minSeparation >= -1.5f * Settings.LinearSlop); }
public void Reset(TimeStep step, int count, Contact[] contacts, Position[] positions, Velocity[] velocities, bool warmstarting = Settings.EnableWarmstarting) { _step = step; _count = count; _positions = positions; _velocities = velocities; _contacts = contacts; // grow the array if (_velocityConstraints == null || _velocityConstraints.Length < count) { _velocityConstraints = new ContactVelocityConstraint[count * 2]; _positionConstraints = new ContactPositionConstraint[count * 2]; for (int i = 0; i < _velocityConstraints.Length; i++) { _velocityConstraints[i] = new ContactVelocityConstraint(); } for (int i = 0; i < _positionConstraints.Length; i++) { _positionConstraints[i] = new ContactPositionConstraint(); } } // Initialize position independent portions of the constraints. for (int i = 0; i < _count; ++i) { Contact contact = contacts[i]; Fixture fixtureA = contact.FixtureA; Fixture fixtureB = contact.FixtureB; Shape shapeA = fixtureA.Shape; Shape shapeB = fixtureB.Shape; FP radiusA = shapeA.Radius; FP radiusB = shapeB.Radius; Body bodyA = fixtureA.Body; Body bodyB = fixtureB.Body; Manifold manifold = contact.Manifold; int pointCount = manifold.PointCount; Debug.Assert(pointCount > 0); ContactVelocityConstraint vc = _velocityConstraints[i]; vc.friction = contact.Friction; vc.restitution = contact.Restitution; vc.tangentSpeed = contact.TangentSpeed; vc.indexA = bodyA.IslandIndex; vc.indexB = bodyB.IslandIndex; vc.invMassA = bodyA._invMass; vc.invMassB = bodyB._invMass; vc.invIA = bodyA._invI; vc.invIB = bodyB._invI; vc.contactIndex = i; vc.pointCount = pointCount; vc.K.SetZero(); vc.normalMass.SetZero(); ContactPositionConstraint pc = _positionConstraints[i]; pc.indexA = bodyA.IslandIndex; pc.indexB = bodyB.IslandIndex; pc.invMassA = bodyA._invMass; pc.invMassB = bodyB._invMass; pc.localCenterA = bodyA._sweep.LocalCenter; pc.localCenterB = bodyB._sweep.LocalCenter; pc.invIA = bodyA._invI; pc.invIB = bodyB._invI; pc.localNormal = manifold.LocalNormal; pc.localPoint = manifold.LocalPoint; pc.pointCount = pointCount; pc.radiusA = radiusA; pc.radiusB = radiusB; pc.type = manifold.Type; for (int j = 0; j < pointCount; ++j) { ManifoldPoint cp = manifold.Points[j]; VelocityConstraintPoint vcp = vc.points[j]; if (Settings.EnableWarmstarting) { vcp.normalImpulse = _step.dtRatio * cp.NormalImpulse; vcp.tangentImpulse = _step.dtRatio * cp.TangentImpulse; } else { vcp.normalImpulse = 0.0f; vcp.tangentImpulse = 0.0f; } vcp.rA = TSVector2.zero; vcp.rB = TSVector2.zero; vcp.normalMass = 0.0f; vcp.tangentMass = 0.0f; vcp.velocityBias = 0.0f; pc.localPoints[j] = cp.LocalPoint; } } }
public void InitializeVelocityConstraints() { for (int i = 0; i < _count; ++i) { ContactVelocityConstraint vc = _velocityConstraints[i]; ContactPositionConstraint pc = _positionConstraints[i]; FP radiusA = pc.radiusA; FP radiusB = pc.radiusB; Manifold manifold = _contacts[vc.contactIndex].Manifold; int indexA = vc.indexA; int indexB = vc.indexB; FP mA = vc.invMassA; FP mB = vc.invMassB; FP iA = vc.invIA; FP iB = vc.invIB; TSVector2 localCenterA = pc.localCenterA; TSVector2 localCenterB = pc.localCenterB; TSVector2 cA = _positions[indexA].c; FP aA = _positions[indexA].a; TSVector2 vA = _velocities[indexA].v; FP wA = _velocities[indexA].w; TSVector2 cB = _positions[indexB].c; FP aB = _positions[indexB].a; TSVector2 vB = _velocities[indexB].v; FP wB = _velocities[indexB].w; Debug.Assert(manifold.PointCount > 0); Transform xfA = new Transform(); Transform xfB = new Transform(); xfA.q.Set(aA); xfB.q.Set(aB); xfA.p = cA - MathUtils.Mul(xfA.q, localCenterA); xfB.p = cB - MathUtils.Mul(xfB.q, localCenterB); TSVector2 normal; FixedArray2 <TSVector2> points; WorldManifold.Initialize(ref manifold, ref xfA, radiusA, ref xfB, radiusB, out normal, out points); vc.normal = normal; int pointCount = vc.pointCount; for (int j = 0; j < pointCount; ++j) { VelocityConstraintPoint vcp = vc.points[j]; vcp.rA = points[j] - cA; vcp.rB = points[j] - cB; FP rnA = MathUtils.Cross(vcp.rA, vc.normal); FP rnB = MathUtils.Cross(vcp.rB, vc.normal); FP kNormal = mA + mB + iA * rnA * rnA + iB * rnB * rnB; vcp.normalMass = kNormal > 0.0f ? 1.0f / kNormal : 0.0f; TSVector2 tangent = MathUtils.Cross(vc.normal, 1.0f); FP rtA = MathUtils.Cross(vcp.rA, tangent); FP rtB = MathUtils.Cross(vcp.rB, tangent); FP kTangent = mA + mB + iA * rtA * rtA + iB * rtB * rtB; vcp.tangentMass = kTangent > 0.0f ? 1.0f / kTangent : 0.0f; // Setup a velocity bias for restitution. vcp.velocityBias = 0.0f; FP vRel = TSVector2.Dot(vc.normal, vB + MathUtils.Cross(wB, vcp.rB) - vA - MathUtils.Cross(wA, vcp.rA)); if (vRel < -Settings.VelocityThreshold) { vcp.velocityBias = -vc.restitution * vRel; } } // If we have two points, then prepare the block solver. if (vc.pointCount == 2) { VelocityConstraintPoint vcp1 = vc.points[0]; VelocityConstraintPoint vcp2 = vc.points[1]; FP rn1A = MathUtils.Cross(vcp1.rA, vc.normal); FP rn1B = MathUtils.Cross(vcp1.rB, vc.normal); FP rn2A = MathUtils.Cross(vcp2.rA, vc.normal); FP rn2B = MathUtils.Cross(vcp2.rB, vc.normal); FP k11 = mA + mB + iA * rn1A * rn1A + iB * rn1B * rn1B; FP k22 = mA + mB + iA * rn2A * rn2A + iB * rn2B * rn2B; FP k12 = mA + mB + iA * rn1A * rn2A + iB * rn1B * rn2B; // Ensure a reasonable condition number. FP k_maxConditionNumber = 1000.0f; if (k11 * k11 < k_maxConditionNumber * (k11 * k22 - k12 * k12)) { // K is safe to invert. vc.K.ex = new TSVector2(k11, k12); vc.K.ey = new TSVector2(k12, k22); vc.normalMass = vc.K.Inverse; } else { // The constraints are redundant, just use one. // TODO_ERIN use deepest? vc.pointCount = 1; } } } }