double[,] KFound(List <InitialStatisticalAnalys> ISA, List <int> IND) { double[,] rez = new double[IND.Count, IND.Count]; for (int i = 0; i < IND.Count; i++) { rez[i, i] = 1; } for (int i = 0; i < IND.Count; i++) { for (int j = i + 1; j < IND.Count; j++) { rez[i, j] = Correlation_RegressionAnalysis.KorelationFound(ISA[IND[i]], ISA[IND[j]]); rez[j, i] = rez[i, j]; } } return(rez); }
static public List <Data> RegresParamFound(InitialStatisticalAnalys ISAX, InitialStatisticalAnalys ISAY, double Korelation, string TypeRegVib, ref double Szal2) { List <Data> Qm = new List <Data>(); if (TypeRegVib == RegresTypeName.ParabRegresion) { Data a = new Data(), b = new Data(), c = new Data(); Qm.Add(a); Qm.Add(b); Qm.Add(c); a.Name = "a"; b.Name = "b"; c.Name = "c"; double n1 = 0;//107 page andan double x2 = InitialStatisticalAnalys.StartMoment(ISAX.l, 2); double x3 = InitialStatisticalAnalys.StartMoment(ISAX.l, 3); double x4 = InitialStatisticalAnalys.StartMoment(ISAX.l, 4); for (int i = 0; i < ISAX.unsortl.Length; i++) { n1 += (ISAY.unsortl[i] - ISAY.Mx.Q) * (Math.Pow(ISAX.unsortl[i], 2) - x2); } n1 /= ISAX.unsortl.Length; c.Q = ISAX.Dx.Q * n1 - (x3 - x2 * ISAX.Mx.Q) * Korelation * ISAX.Gx.Q * ISAY.Gx.Q; c.Q /= ISAX.Dx.Q * (x4 - Math.Pow(x2, 2)) - Math.Pow(x3 - x2 * ISAX.Mx.Q, 2); b.Q = (x4 - Math.Pow(x2, 2)) * Korelation * ISAX.Gx.Q * ISAY.Gx.Q - (x3 - x2 * ISAX.Mx.Q) * n1; b.Q /= ISAX.Dx.Q * (x4 - Math.Pow(x2, 2)) - Math.Pow(x3 - x2 * ISAX.Mx.Q, 2); a.Q = ISAY.Mx.Q - b.Q * ISAX.Mx.Q - c.Q * ISAX.X_2.Q; Data a2 = new Data(), b2 = new Data(), c2 = new Data(); Qm.Add(a2); Qm.Add(b2); Qm.Add(c2); a2.Name = "a2"; b2.Name = "b2"; c2.Name = "c2"; a2.Q = ISAY.Mx.Q; double Mfi2scv = 0; { double TD = 0; for (int i = 0; i < ISAX.l.Count; i++) { Mfi2scv += Math.Pow(fi2F(ISAX.unsortl[i], ISAX.Dx.Q, ISAX.Mx.Q, x2, x3), 2); b2.Q += (ISAX.unsortl[i] - ISAX.Mx.Q) * ISAY.unsortl[i]; c2.Q += fi2F(ISAX.unsortl[i], ISAX.Dx.Q, ISAX.Mx.Q, x2, x3) * ISAY.unsortl[i]; TD += Math.Pow(fi2F(ISAX.unsortl[i], ISAX.Dx.Q, ISAX.Mx.Q, x2, x3), 2); } c2.Q /= TD; } Mfi2scv /= ISAX.l.Count; b2.Q /= ISAX.l.Count; b2.Q /= ISAX.Dx.Q; Szal2 = 0; for (int i = 0; i < ISAX.l.Count; i++) { Szal2 += Math.Pow(ISAY.unsortl[i] - a2.Q - b2.Q * fi1F(ISAX.unsortl[i], ISAX.Mx.Q) - c2.Q * fi2F(ISAX.unsortl[i], ISAX.Dx.Q, ISAX.Mx.Q, x2, x3), 2); } Szal2 /= ISAX.l.Count - 3; Szal2 = Math.Sqrt(Szal2); a2.QSigma = Szal2 / Math.Sqrt(ISAX.unsortl.Length); b2.QSigma = Szal2 / (ISAX.Dx.Q * Math.Sqrt(ISAX.unsortl.Length)); c2.QSigma = Szal2 / Math.Sqrt(ISAX.unsortl.Length * Mfi2scv); double Tt = Distributions.StudentQuantile(1 - ISAX.alf.Q / 2, ISAX.unsortl.Length - 3); a2.QButton = a2.Q - Tt * a2.QSigma; a2.QUpper = a2.Q + Tt * a2.QSigma; b2.QButton = b2.Q - Tt * b2.QSigma; b2.QUpper = b2.Q + Tt * b2.QSigma; c2.QButton = c2.Q - Tt * c2.QSigma; c2.QUpper = c2.Q + Tt * c2.QSigma; double at = ISAY.Mx.Q - b.Q * ISAX.Mx.Q - c.Q * Math.Pow(ISAX.Mx.Q, 2) - a.Q; Data ta = new Data(), tb = new Data(), tc = new Data(); } else { Data a = new Data(), b = new Data(); Qm.Add(a); Qm.Add(b); a.Name = "a"; b.Name = "b"; List <double> t = new List <double>(); List <double> z = new List <double>(); for (int i = 0; i < ISAX.unsortl.Length; i++) { t.Add(RegresType.FiX(ISAX.unsortl[i], TypeRegVib)); z.Add(RegresType.FiY(ISAY.unsortl[i], ISAX.unsortl[i], TypeRegVib)); } /*double Mfx = 0,Mfxfx=0, Mfy = 0, Mfxfy = 0,W = 0; * for (int i = 0; i < ISAX.unsortl.Length; i++) * { * Mfx += RegresType.FiX(ISAX.unsortl[i], TypeRegVib) * * RegresType.W(ISAY.unsortl[i], ISAX.unsortl[i], TypeRegVib); * Mfxfx += Math.Pow(RegresType.FiX(ISAX.unsortl[i], TypeRegVib),2) * * RegresType.W(ISAY.unsortl[i], ISAX.unsortl[i], TypeRegVib); * Mfy += RegresType.FiY(ISAY.unsortl[i], ISAX.unsortl[i], TypeRegVib) * * RegresType.W(ISAY.unsortl[i], ISAX.unsortl[i], TypeRegVib); * Mfxfy += RegresType.FiX(ISAX.unsortl[i], TypeRegVib) * RegresType.FiY(ISAY.unsortl[i], ISAX.unsortl[i], TypeRegVib) * * RegresType.W(ISAY.unsortl[i], ISAX.unsortl[i], TypeRegVib); * W += RegresType.W(ISAY.unsortl[i], ISAX.unsortl[i], TypeRegVib); * * } * Mfx /= W; * Mfxfx /= W; * Mfxfy /= W; * Mfy /= W;*/ // Qm[1].Q = (Mfxfy - Mfx * Mfy) / (Mfxfx - Math.Pow(Mfx, 2)); //Qm[0].Q = Mfy - Qm[1].Q * Mfx; InitialStatisticalAnalys ISAt = new InitialStatisticalAnalys(t); InitialStatisticalAnalys ISAz = new InitialStatisticalAnalys(z); double Kor_tz = Correlation_RegressionAnalysis.KorelationFound(ISAt, ISAz); Qm[1].Q = Kor_tz * ISAz.Gx.Q / ISAt.Gx.Q; Qm[0].Q = RegresType.A(ISAz.Mx.Q - Qm[1].Q * ISAt.Mx.Q, TypeRegVib); double Szal = SzalF(ISAX, ISAY, Qm, TypeRegVib); Qm[0].QSigma = RegresType.A(Szal * Math.Sqrt(1.0 / ISAX.unsortl.Length + Math.Pow(ISAt.Mx.Q, 2) / (ISAt.Dx.Q * (ISAX.unsortl.Length - 1))), TypeRegVib); Qm[1].QSigma = Szal / (ISAX.unsortl.Length - 1); Qm[0].QButton = RegresType.A(Qm[0].Q - Distributions.StudentQuantile(1 - ISAX.alf.Q / 2, ISAX.unsortl.Length - 2) * Qm[0].QSigma, TypeRegVib); Qm[0].QUpper = RegresType.A(Qm[0].Q + Distributions.StudentQuantile(1 - ISAX.alf.Q / 2, ISAX.unsortl.Length - 2) * Qm[0].QSigma, TypeRegVib); Qm[1].QButton = Qm[1].Q - Distributions.StudentQuantile(1 - ISAX.alf.Q / 2, ISAX.unsortl.Length - 2) * Qm[1].QSigma; Qm[1].QUpper = Qm[1].Q + Distributions.StudentQuantile(1 - ISAX.alf.Q / 2, ISAX.unsortl.Length - 2) * Qm[1].QSigma; } return(Qm); }
double cov(InitialStatisticalAnalys ISAe1, InitialStatisticalAnalys ISAe2) { return(ISAe1.Gx.Q * ISAe2.Gx.Q * Correlation_RegressionAnalysis.KorelationFound(ISAe1, ISAe2)); }