/**
         *  @brief Returns the first {@link FPCollider2D} within a rectangular area. Returns null if there is none.
         *
         *  @param pointA Top-left corner of the rectangle.
         *  @param radius Bottom-right corner of the rectangle.
         *  @param layerMask Unity's layer mask to filter objects.
         **/
        public static object _OverlapArea(FPVector2 pointA, FPVector2 pointB, Physics2D.BodySpecialSensor sensorType, int layerMask = UnityEngine.Physics.DefaultRaycastLayers)
        {
            FPVector2 center;

            center.x = (pointA.x + pointB.x) * FP.Half;
            center.y = (pointA.y + pointB.y) * FP.Half;

            Physics2D.Vertices vertices = new Physics2D.Vertices(4);
            vertices.Add(new FPVector2(pointA.x, pointA.y) - center);
            vertices.Add(new FPVector2(pointB.x, pointA.y) - center);
            vertices.Add(new FPVector2(pointB.x, pointB.y) - center);
            vertices.Add(new FPVector2(pointA.x, pointB.y) - center);

            return(OverlapGeneric(new Physics2D.PolygonShape(vertices, 1), center, sensorType, layerMask));
        }
        /**
         *  @brief Create the internal shape used to represent a PolygonCollider.
         **/
        public override Spax.Physics2D.Shape[] CreateShapes()
        {
            if (_points == null || _points.Length == 0)
            {
                return(null);
            }


            FPVector2 lossy2D = new FPVector2(lossyScale.x, lossyScale.y);

            Spax.Physics2D.Vertices v = new Physics2D.Vertices();
            for (int index = 0, length = _points.Length; index < length; index++)
            {
                v.Add(FPVector2.Scale(_points[index], lossy2D));
            }

            List <Spax.Physics2D.Vertices> convexShapeVs = Spax.Physics2D.BayazitDecomposer.ConvexPartition(v);

            Spax.Physics2D.Shape[] result = new Physics2D.Shape[convexShapeVs.Count];
            for (int index = 0, length = result.Length; index < length; index++)
            {
                result[index] = new Spax.Physics2D.PolygonShape(convexShapeVs[index], 1);
            }

            return(result);
        }
        /// <summary>
        /// Merges all parallel edges in the list of vertices
        /// </summary>
        /// <param name="vertices">The vertices.</param>
        /// <param name="tolerance">The tolerance.</param>
        public static Vertices MergeParallelEdges(Vertices vertices, FP tolerance)
        {
            //From Eric Jordan's convex decomposition library

            if (vertices.Count <= 3)
            {
                return(vertices); //Can't do anything useful here to a triangle
            }
            bool[] mergeMe      = new bool[vertices.Count];
            int    newNVertices = vertices.Count;

            //Gather points to process
            for (int i = 0; i < vertices.Count; ++i)
            {
                int lower  = (i == 0) ? (vertices.Count - 1) : (i - 1);
                int middle = i;
                int upper  = (i == vertices.Count - 1) ? (0) : (i + 1);

                FP dx0   = vertices[middle].x - vertices[lower].x;
                FP dy0   = vertices[middle].y - vertices[lower].y;
                FP dx1   = vertices[upper].y - vertices[middle].x;
                FP dy1   = vertices[upper].y - vertices[middle].y;
                FP norm0 = FP.Sqrt(dx0 * dx0 + dy0 * dy0);
                FP norm1 = FP.Sqrt(dx1 * dx1 + dy1 * dy1);

                if (!(norm0 > 0.0f && norm1 > 0.0f) && newNVertices > 3)
                {
                    //Merge identical points
                    mergeMe[i] = true;
                    --newNVertices;
                }

                dx0 /= norm0;
                dy0 /= norm0;
                dx1 /= norm1;
                dy1 /= norm1;
                FP cross = dx0 * dy1 - dx1 * dy0;
                FP dot   = dx0 * dx1 + dy0 * dy1;

                if (FP.Abs(cross) < tolerance && dot > 0 && newNVertices > 3)
                {
                    mergeMe[i] = true;
                    --newNVertices;
                }
                else
                {
                    mergeMe[i] = false;
                }
            }

            if (newNVertices == vertices.Count || newNVertices == 0)
            {
                return(vertices);
            }

            int currIndex = 0;

            //Copy the vertices to a new list and clear the old
            Vertices newVertices = new Vertices(newNVertices);

            for (int i = 0; i < vertices.Count; ++i)
            {
                if (mergeMe[i] || newNVertices == 0 || currIndex == newNVertices)
                {
                    continue;
                }

                Debug.Assert(currIndex < newNVertices);

                newVertices.Add(vertices[i]);
                ++currIndex;
            }

            return(newVertices);
        }
예제 #4
0
        /// <summary>
        /// Returns the convex hull from the given vertices..
        /// </summary>
        public static Vertices GetConvexHull(Vertices vertices)
        {
            if (vertices.Count <= 3)
            {
                return(vertices);
            }

            Vertices pointSet = new Vertices(vertices);

            //Sort by X-axis
            pointSet.Sort(_pointComparer);

            FPVector2[] h = new FPVector2[pointSet.Count];
            Vertices    res;

            int top = -1; // indices for bottom and top of the stack
            int i;        // array scan index

            // Get the indices of points with min x-coord and min|max y-coord
            const int minmin = 0;
            FP        xmin   = pointSet[0].x;

            for (i = 1; i < pointSet.Count; i++)
            {
                if (pointSet[i].x != xmin)
                {
                    break;
                }
            }

            // degenerate case: all x-coords == xmin
            int minmax = i - 1;

            if (minmax == pointSet.Count - 1)
            {
                h[++top] = pointSet[minmin];

                if (pointSet[minmax].y != pointSet[minmin].y) // a nontrivial segment
                {
                    h[++top] = pointSet[minmax];
                }

                h[++top] = pointSet[minmin]; // add polygon endpoint

                res = new Vertices(top + 1);
                for (int j = 0; j < top + 1; j++)
                {
                    res.Add(h[j]);
                }

                return(res);
            }

            top = -1;

            // Get the indices of points with max x-coord and min|max y-coord
            int maxmax = pointSet.Count - 1;
            FP  xmax   = pointSet[pointSet.Count - 1].x;

            for (i = pointSet.Count - 2; i >= 0; i--)
            {
                if (pointSet[i].x != xmax)
                {
                    break;
                }
            }
            int maxmin = i + 1;

            // Compute the lower hull on the stack H
            h[++top] = pointSet[minmin]; // push minmin point onto stack
            i        = minmax;
            while (++i <= maxmin)
            {
                // the lower line joins P[minmin] with P[maxmin]
                if (MathUtils.Area(pointSet[minmin], pointSet[maxmin], pointSet[i]) >= 0 && i < maxmin)
                {
                    continue;   // ignore P[i] above or on the lower line
                }
                while (top > 0) // there are at least 2 points on the stack
                {
                    // test if P[i] is left of the line at the stack top
                    if (MathUtils.Area(h[top - 1], h[top], pointSet[i]) > 0)
                    {
                        break;          // P[i] is a new hull vertex
                    }
                    top--;              // pop top point off stack
                }
                h[++top] = pointSet[i]; // push P[i] onto stack
            }

            // Next, compute the upper hull on the stack H above the bottom hull
            if (maxmax != maxmin)            // if distinct xmax points
            {
                h[++top] = pointSet[maxmax]; // push maxmax point onto stack
            }
            int bot = top;

            i = maxmin;
            while (--i >= minmax)
            {
                // the upper line joins P[maxmax] with P[minmax]
                if (MathUtils.Area(pointSet[maxmax], pointSet[minmax], pointSet[i]) >= 0 && i > minmax)
                {
                    continue;     // ignore P[i] below or on the upper line
                }
                while (top > bot) // at least 2 points on the upper stack
                {
                    // test if P[i] is left of the line at the stack top
                    if (MathUtils.Area(h[top - 1], h[top], pointSet[i]) > 0)
                    {
                        break; // P[i] is a new hull vertex
                    }
                    top--;     // pop top point off stack
                }

                h[++top] = pointSet[i]; // push P[i] onto stack
            }

            if (minmax != minmin)
            {
                h[++top] = pointSet[minmin]; // push joining endpoint onto stack
            }
            res = new Vertices(top + 1);

            for (int j = 0; j < top + 1; j++)
            {
                res.Add(h[j]);
            }

            return(res);
        }
        /// <summary>
        /// Calculates the polygon(s) from the result simplical chain.
        /// </summary>
        /// <remarks>Used by method <c>Execute()</c>.</remarks>
        private static PolyClipError BuildPolygonsFromChain(List <Edge> simplicies, out List <Vertices> result)
        {
            result = new List <Vertices>();
            PolyClipError errVal = PolyClipError.None;

            while (simplicies.Count > 0)
            {
                Vertices output = new Vertices();
                output.Add(simplicies[0].EdgeStart);
                output.Add(simplicies[0].EdgeEnd);
                simplicies.RemoveAt(0);
                bool closed = false;
                int  index  = 0;
                int  count  = simplicies.Count; // Needed to catch infinite loops
                while (!closed && simplicies.Count > 0)
                {
                    if (VectorEqual(output[output.Count - 1], simplicies[index].EdgeStart))
                    {
                        if (VectorEqual(simplicies[index].EdgeEnd, output[0]))
                        {
                            closed = true;
                        }
                        else
                        {
                            output.Add(simplicies[index].EdgeEnd);
                        }
                        simplicies.RemoveAt(index);
                        --index;
                    }
                    else if (VectorEqual(output[output.Count - 1], simplicies[index].EdgeEnd))
                    {
                        if (VectorEqual(simplicies[index].EdgeStart, output[0]))
                        {
                            closed = true;
                        }
                        else
                        {
                            output.Add(simplicies[index].EdgeStart);
                        }
                        simplicies.RemoveAt(index);
                        --index;
                    }
                    if (!closed)
                    {
                        if (++index == simplicies.Count)
                        {
                            if (count == simplicies.Count)
                            {
                                result = new List <Vertices>();
                                Debug.WriteLine("Undefined error while building result polygon(s).");
                                return(PolyClipError.BrokenResult);
                            }
                            index = 0;
                            count = simplicies.Count;
                        }
                    }
                }
                if (output.Count < 3)
                {
                    errVal = PolyClipError.DegeneratedOutput;
                    Debug.WriteLine("Degenerated output polygon produced (vertices < 3).");
                }
                result.Add(output);
            }
            return(errVal);
        }
        /// <summary>
        /// Decompose the polygon into triangles.
        ///
        /// Properties:
        /// - Only works on counter clockwise polygons
        ///
        /// </summary>
        /// <param name="vertices">The list of points describing the polygon</param>
        public static List <Vertices> ConvexPartition(Vertices vertices)
        {
            Debug.Assert(vertices.Count > 3);
            Debug.Assert(vertices.IsCounterClockWise());

            int[] polygon = new int[vertices.Count];

            for (int v = 0; v < vertices.Count; v++)
            {
                polygon[v] = v;
            }

            int nv = vertices.Count;

            // Remove nv-2 Vertices, creating 1 triangle every time
            int count = 2 * nv; /* error detection */

            List <Vertices> result = new List <Vertices>();

            for (int v = nv - 1; nv > 2;)
            {
                // If we loop, it is probably a non-simple polygon
                if (0 >= (count--))
                {
                    // Triangulate: ERROR - probable bad polygon!
                    return(new List <Vertices>());
                }

                // Three consecutive vertices in current polygon, <u,v,w>
                int u = v;
                if (nv <= u)
                {
                    u = 0; // Previous
                }
                v = u + 1;
                if (nv <= v)
                {
                    v = 0; // New v
                }
                int w = v + 1;
                if (nv <= w)
                {
                    w = 0; // Next
                }
                _tmpA = vertices[polygon[u]];
                _tmpB = vertices[polygon[v]];
                _tmpC = vertices[polygon[w]];

                if (Snip(vertices, u, v, w, nv, polygon))
                {
                    int s, t;

                    // Output Triangle
                    Vertices triangle = new Vertices(3);
                    triangle.Add(_tmpA);
                    triangle.Add(_tmpB);
                    triangle.Add(_tmpC);
                    result.Add(triangle);

                    // Remove v from remaining polygon
                    for (s = v, t = v + 1; t < nv; s++, t++)
                    {
                        polygon[s] = polygon[t];
                    }
                    nv--;

                    // Reset error detection counter
                    count = 2 * nv;
                }
            }

            return(result);
        }
        /// <summary>
        /// Activate the explosion at the specified position.
        /// </summary>
        /// <param name="pos">The position where the explosion happens </param>
        /// <param name="radius">The explosion radius </param>
        /// <param name="maxForce">The explosion force at the explosion point (then is inversely proportional to the square of the distance)</param>
        /// <returns>A list of bodies and the amount of force that was applied to them.</returns>
        public Dictionary <Fixture, FPVector2> Activate(FPVector2 pos, FP radius, FP maxForce)
        {
            AABB aabb;

            aabb.LowerBound = pos + new FPVector2(-radius, -radius);
            aabb.UpperBound = pos + new FPVector2(radius, radius);
            Fixture[] shapes = new Fixture[MaxShapes];

            // More than 5 shapes in an explosion could be possible, but still strange.
            Fixture[] containedShapes = new Fixture[5];
            bool      exit            = false;

            int shapeCount          = 0;
            int containedShapeCount = 0;

            // Query the world for overlapping shapes.
            World.QueryAABB(
                fixture =>
            {
                if (fixture.TestPoint(ref pos))
                {
                    if (IgnoreWhenInsideShape)
                    {
                        exit = true;
                        return(false);
                    }

                    containedShapes[containedShapeCount++] = fixture;
                }
                else
                {
                    shapes[shapeCount++] = fixture;
                }

                // Continue the query.
                return(true);
            }, ref aabb);

            if (exit)
            {
                return(new Dictionary <Fixture, FPVector2>());
            }

            Dictionary <Fixture, FPVector2> exploded = new Dictionary <Fixture, FPVector2>(shapeCount + containedShapeCount);

            // Per shape max/min angles for now.
            FP[] vals     = new FP[shapeCount * 2];
            int  valIndex = 0;

            for (int i = 0; i < shapeCount; ++i)
            {
                PolygonShape ps;
                CircleShape  cs = shapes[i].Shape as CircleShape;
                if (cs != null)
                {
                    // We create a "diamond" approximation of the circle
                    Vertices  v   = new Vertices();
                    FPVector2 vec = FPVector2.zero + new FPVector2(cs.Radius, 0);
                    v.Add(vec);
                    vec = FPVector2.zero + new FPVector2(0, cs.Radius);
                    v.Add(vec);
                    vec = FPVector2.zero + new FPVector2(-cs.Radius, cs.Radius);
                    v.Add(vec);
                    vec = FPVector2.zero + new FPVector2(0, -cs.Radius);
                    v.Add(vec);
                    ps = new PolygonShape(v, 0);
                }
                else
                {
                    ps = shapes[i].Shape as PolygonShape;
                }

                if ((shapes[i].Body.BodyType == BodyType.Dynamic) && ps != null)
                {
                    FPVector2 toCentroid      = shapes[i].Body.GetWorldPoint(ps.MassData.Centroid) - pos;
                    FP        angleToCentroid = FP.Atan2(toCentroid.y, toCentroid.x);
                    FP        min             = FP.MaxValue;
                    FP        max             = FP.MinValue;
                    FP        minAbsolute     = 0.0f;
                    FP        maxAbsolute     = 0.0f;

                    for (int j = 0; j < ps.Vertices.Count; ++j)
                    {
                        FPVector2 toVertex = (shapes[i].Body.GetWorldPoint(ps.Vertices[j]) - pos);
                        FP        newAngle = FP.Atan2(toVertex.y, toVertex.x);
                        FP        diff     = (newAngle - angleToCentroid);

                        diff = (diff - FP.Pi) % (2 * FP.Pi);
                        // the minus pi is important. It means cutoff for going other direction is at 180 deg where it needs to be

                        if (diff < 0.0f)
                        {
                            diff += 2 * FP.Pi; // correction for not handling negs
                        }
                        diff -= FP.Pi;

                        if (FP.Abs(diff) > FP.Pi)
                        {
                            continue; // Something's wrong, point not in shape but exists angle diff > 180
                        }
                        if (diff > max)
                        {
                            max         = diff;
                            maxAbsolute = newAngle;
                        }
                        if (diff < min)
                        {
                            min         = diff;
                            minAbsolute = newAngle;
                        }
                    }

                    vals[valIndex] = minAbsolute;
                    ++valIndex;
                    vals[valIndex] = maxAbsolute;
                    ++valIndex;
                }
            }

            Array.Sort(vals, 0, valIndex, _rdc);
            _data.Clear();
            bool rayMissed = true;

            for (int i = 0; i < valIndex; ++i)
            {
                Fixture fixture = null;
                FP      midpt;

                int iplus = (i == valIndex - 1 ? 0 : i + 1);
                if (vals[i] == vals[iplus])
                {
                    continue;
                }

                if (i == valIndex - 1)
                {
                    // the single edgecase
                    midpt = (vals[0] + FP.PiTimes2 + vals[i]);
                }
                else
                {
                    midpt = (vals[i + 1] + vals[i]);
                }

                midpt = midpt / 2;

                FPVector2 p1 = pos;
                FPVector2 p2 = radius * new FPVector2(FP.Cos(midpt), FP.Sin(midpt)) + pos;

                // RaycastOne
                bool hitClosest = false;
                World.RayCast((f, p, n, fr) =>
                {
                    Body body = f.Body;

                    if (!IsActiveOn(body))
                    {
                        return(0);
                    }

                    hitClosest = true;
                    fixture    = f;
                    return(fr);
                }, p1, p2);

                //draws radius points
                if ((hitClosest) && (fixture.Body.BodyType == BodyType.Dynamic))
                {
                    if ((_data.Any()) && (_data.Last().Body == fixture.Body) && (!rayMissed))
                    {
                        int       laPos = _data.Count - 1;
                        ShapeData la    = _data[laPos];
                        la.Max       = vals[iplus];
                        _data[laPos] = la;
                    }
                    else
                    {
                        // make new
                        ShapeData d;
                        d.Body = fixture.Body;
                        d.Min  = vals[i];
                        d.Max  = vals[iplus];
                        _data.Add(d);
                    }

                    if ((_data.Count > 1) &&
                        (i == valIndex - 1) &&
                        (_data.Last().Body == _data.First().Body) &&
                        (_data.Last().Max == _data.First().Min))
                    {
                        ShapeData fi = _data[0];
                        fi.Min = _data.Last().Min;
                        _data.RemoveAt(_data.Count - 1);
                        _data[0] = fi;
                        while (_data.First().Min >= _data.First().Max)
                        {
                            fi.Min  -= FP.PiTimes2;
                            _data[0] = fi;
                        }
                    }

                    int       lastPos = _data.Count - 1;
                    ShapeData last    = _data[lastPos];
                    while ((_data.Count > 0) &&
                           (_data.Last().Min >= _data.Last().Max))    // just making sure min<max
                    {
                        last.Min       = _data.Last().Min - FP.PiTimes2;
                        _data[lastPos] = last;
                    }
                    rayMissed = false;
                }
                else
                {
                    rayMissed = true; // raycast did not find a shape
                }
            }

            for (int i = 0; i < _data.Count; ++i)
            {
                if (!IsActiveOn(_data[i].Body))
                {
                    continue;
                }

                FP arclen = _data[i].Max - _data[i].Min;

                FP  first        = FPMath.Min(MaxEdgeOffset, EdgeRatio * arclen);
                int insertedRays = FP.Ceiling((((arclen - 2.0f * first) - (MinRays - 1) * MaxAngle) / MaxAngle)).AsInt();

                if (insertedRays < 0)
                {
                    insertedRays = 0;
                }

                FP offset = (arclen - first * 2.0f) / ((FP)MinRays + insertedRays - 1);

                //Note: This loop can go into infinite as it operates on FPs.
                //Added FPEquals with a large epsilon.
                for (FP j = _data[i].Min + first;
                     j < _data[i].Max || MathUtils.FPEquals(j, _data[i].Max, 0.0001f);
                     j += offset)
                {
                    FPVector2 p1        = pos;
                    FPVector2 p2        = pos + radius * new FPVector2(FP.Cos(j), FP.Sin(j));
                    FPVector2 hitpoint  = FPVector2.zero;
                    FP        minlambda = FP.MaxValue;

                    List <Fixture> fl = _data[i].Body.FixtureList;
                    for (int x = 0; x < fl.Count; x++)
                    {
                        Fixture      f = fl[x];
                        RayCastInput ri;
                        ri.Point1      = p1;
                        ri.Point2      = p2;
                        ri.MaxFraction = 50f;

                        RayCastOutput ro;
                        if (f.RayCast(out ro, ref ri, 0))
                        {
                            if (minlambda > ro.Fraction)
                            {
                                minlambda = ro.Fraction;
                                hitpoint  = ro.Fraction * p2 + (1 - ro.Fraction) * p1;
                            }
                        }

                        // the force that is to be applied for this particular ray.
                        // offset is angular coverage. lambda*length of segment is distance.
                        FP impulse = (arclen / (MinRays + insertedRays)) * maxForce * 180.0f / FP.Pi * (1.0f - Spax.FPMath.Min(FP.One, minlambda));

                        // We Apply the impulse!!!
                        FPVector2 vectImp = FPVector2.Dot(impulse * new FPVector2(FP.Cos(j), FP.Sin(j)), -ro.Normal) * new FPVector2(FP.Cos(j), FP.Sin(j));
                        _data[i].Body.ApplyLinearImpulse(ref vectImp, ref hitpoint);

                        // We gather the fixtures for returning them
                        if (exploded.ContainsKey(f))
                        {
                            exploded[f] += vectImp;
                        }
                        else
                        {
                            exploded.Add(f, vectImp);
                        }

                        if (minlambda > 1.0f)
                        {
                            hitpoint = p2;
                        }
                    }
                }
            }

            // We check contained shapes
            for (int i = 0; i < containedShapeCount; ++i)
            {
                Fixture fix = containedShapes[i];

                if (!IsActiveOn(fix.Body))
                {
                    continue;
                }

                FP        impulse = MinRays * maxForce * 180.0f / FP.Pi;
                FPVector2 hitPoint;

                CircleShape circShape = fix.Shape as CircleShape;
                if (circShape != null)
                {
                    hitPoint = fix.Body.GetWorldPoint(circShape.Position);
                }
                else
                {
                    PolygonShape shape = fix.Shape as PolygonShape;
                    hitPoint = fix.Body.GetWorldPoint(shape.MassData.Centroid);
                }

                FPVector2 vectImp = impulse * (hitPoint - pos);

                fix.Body.ApplyLinearImpulse(ref vectImp, ref hitPoint);

                if (!exploded.ContainsKey(fix))
                {
                    exploded.Add(fix, vectImp);
                }
            }

            return(exploded);
        }
        /// <summary>
        /// Combine a list of triangles into a list of convex polygons.
        ///
        /// Note: This only works on triangles.
        /// </summary>
        ///<param name="triangles">The triangles.</param>
        ///<param name="maxPolys">The maximun number of polygons to return.</param>
        ///<param name="tolerance">The tolerance</param>
        public static List <Vertices> PolygonizeTriangles(List <Vertices> triangles, int maxPolys = int.MaxValue, float tolerance = 0.001f)
        {
            if (triangles.Count <= 0)
            {
                return(triangles);
            }

            List <Vertices> polys = new List <Vertices>();

            bool[] covered = new bool[triangles.Count];
            for (int i = 0; i < triangles.Count; ++i)
            {
                covered[i] = false;

                //Check here for degenerate triangles
                Vertices  triangle = triangles[i];
                FPVector2 a        = triangle[0];
                FPVector2 b        = triangle[1];
                FPVector2 c        = triangle[2];

                if ((a.x == b.x && a.y == b.y) || (b.x == c.x && b.y == c.y) || (a.x == c.x && a.y == c.y))
                {
                    covered[i] = true;
                }
            }

            int polyIndex = 0;

            bool notDone = true;

            while (notDone)
            {
                int currTri = -1;
                for (int i = 0; i < triangles.Count; ++i)
                {
                    if (covered[i])
                    {
                        continue;
                    }

                    currTri = i;
                    break;
                }

                if (currTri == -1)
                {
                    notDone = false;
                }
                else
                {
                    Vertices poly = new Vertices(3);

                    for (int i = 0; i < 3; i++)
                    {
                        poly.Add(triangles[currTri][i]);
                    }

                    covered[currTri] = true;
                    int index = 0;
                    for (int i = 0; i < 2 * triangles.Count; ++i, ++index)
                    {
                        while (index >= triangles.Count)
                        {
                            index -= triangles.Count;
                        }
                        if (covered[index])
                        {
                            continue;
                        }
                        Vertices newP = AddTriangle(triangles[index], poly);
                        if (newP == null)
                        {
                            continue; // is this right
                        }
                        if (newP.Count > Settings.MaxPolygonVertices)
                        {
                            continue;
                        }

                        if (newP.IsConvex())
                        {
                            //Or should it be IsUsable?  Maybe re-write IsConvex to apply the angle threshold from Box2d
                            poly           = new Vertices(newP);
                            covered[index] = true;
                        }
                    }

                    //We have a maximum of polygons that we need to keep under.
                    if (polyIndex < maxPolys)
                    {
                        SimplifyTools.MergeParallelEdges(poly, tolerance);

                        //If identical points are present, a triangle gets
                        //borked by the MergeParallelEdges function, hence
                        //the vertex number check
                        if (poly.Count >= 3)
                        {
                            polys.Add(new Vertices(poly));
                        }
                        else
                        {
                            Debug.WriteLine("Skipping corrupt poly.");
                        }
                    }

                    if (poly.Count >= 3)
                    {
                        polyIndex++; //Must be outside (polyIndex < polysLength) test
                    }
                }
            }

            //TODO: Add sanity check
            //Remove empty vertice collections
            for (int i = polys.Count - 1; i >= 0; i--)
            {
                if (polys[i].Count == 0)
                {
                    polys.RemoveAt(i);
                }
            }

            return(polys);
        }
        private static Vertices AddTriangle(Vertices t, Vertices vertices)
        {
            // First, find vertices that connect
            int firstP  = -1;
            int firstT  = -1;
            int secondP = -1;
            int secondT = -1;

            for (int i = 0; i < vertices.Count; i++)
            {
                if (t[0].x == vertices[i].x && t[0].y == vertices[i].y)
                {
                    if (firstP == -1)
                    {
                        firstP = i;
                        firstT = 0;
                    }
                    else
                    {
                        secondP = i;
                        secondT = 0;
                    }
                }
                else if (t[1].x == vertices[i].x && t[1].y == vertices[i].y)
                {
                    if (firstP == -1)
                    {
                        firstP = i;
                        firstT = 1;
                    }
                    else
                    {
                        secondP = i;
                        secondT = 1;
                    }
                }
                else if (t[2].x == vertices[i].x && t[2].y == vertices[i].y)
                {
                    if (firstP == -1)
                    {
                        firstP = i;
                        firstT = 2;
                    }
                    else
                    {
                        secondP = i;
                        secondT = 2;
                    }
                }
            }
            // Fix ordering if first should be last vertex of poly
            if (firstP == 0 && secondP == vertices.Count - 1)
            {
                firstP  = vertices.Count - 1;
                secondP = 0;
            }

            // Didn't find it
            if (secondP == -1)
            {
                return(null);
            }

            // Find tip index on triangle
            int tipT = 0;

            if (tipT == firstT || tipT == secondT)
            {
                tipT = 1;
            }
            if (tipT == firstT || tipT == secondT)
            {
                tipT = 2;
            }

            Vertices result = new Vertices(vertices.Count + 1);

            for (int i = 0; i < vertices.Count; i++)
            {
                result.Add(vertices[i]);

                if (i == firstP)
                {
                    result.Add(t[tipT]);
                }
            }

            return(result);
        }