protected virtual StreamPipeline ComposeOnPipeline(string id, DataExchange exchange, string name) { var onlinePipeline = new StreamPipeline(); parameters = new FilterParameters(); var trainUntil = testStartDateProvider.GetTimestampOfTestStart(id); onlinePipeline.Register(new onNeuralPredictionFilter(parameters, trainUntil, exchange)); onlinePipeline.Register(new onErrorCalculationFilter(parameters)); onlinePipeline.Register(new ResultOutputFilter(repository) { MeasurementId = id, ForecastModelId = name}); return onlinePipeline; }
public onNeuralPredictionFilter(FilterParameters parameters, DateTime trainTill, DataExchange exchange = null) { this.exchange = exchange; this.waitUntil = trainTill; this.timeSeries = new TimeSeries(0); settings = new ForecastSettings(); for (int i = 0; i < 5; i++) { settings.energyLags.Add(i + 1); } model = new MultipleNeuralNetworksModel(); this.parameters = parameters; parameters.Values["model"] = model; }
public offPredictionFittingFilter(FilterParameters parameters, DateTime trainTill, Dictionary<string, int> time, DataExchange exchange = null) { this.exchange = exchange; this.time = time; this.waitUntil = trainTill; this.parameters = parameters; settings = new ForecastSettings(); for (int i = 0; i < 5; i++) { settings.energyLags.Add(i + 1); } for (int i = 0; i < PACKAGE_SIZE; i++) { timeSeriesEnsemble.Add(new TimeSeries(0)); } }
public virtual void UpdateParameters(FilterParameters parameters) { }
private int testCounter = 0; //счетчик замеров в тестовой выборке #endregion Fields #region Constructors public onErrorCalculationFilter(FilterParameters parameters) { this.parameters = parameters; }