private static void BackwardReferencesLz77(int xSize, int ySize, ReadOnlySpan <uint> bgra, int cacheBits, Vp8LHashChain hashChain, Vp8LBackwardRefs refs)
        {
            int  iLastCheck    = -1;
            bool useColorCache = cacheBits > 0;
            int  pixCount      = xSize * ySize;
            var  colorCache    = new ColorCache();

            if (useColorCache)
            {
                colorCache.Init(cacheBits);
            }

            refs.Refs.Clear();
            for (int i = 0; i < pixCount;)
            {
                // Alternative #1: Code the pixels starting at 'i' using backward reference.
                int j;
                int offset = hashChain.FindOffset(i);
                int len    = hashChain.FindLength(i);
                if (len >= MinLength)
                {
                    int lenIni   = len;
                    int maxReach = 0;
                    int jMax     = i + lenIni >= pixCount ? pixCount - 1 : i + lenIni;

                    // Only start from what we have not checked already.
                    iLastCheck = i > iLastCheck ? i : iLastCheck;

                    // We know the best match for the current pixel but we try to find the
                    // best matches for the current pixel AND the next one combined.
                    // The naive method would use the intervals:
                    // [i,i+len) + [i+len, length of best match at i+len)
                    // while we check if we can use:
                    // [i,j) (where j<=i+len) + [j, length of best match at j)
                    for (j = iLastCheck + 1; j <= jMax; j++)
                    {
                        int lenJ  = hashChain.FindLength(j);
                        int reach = j + (lenJ >= MinLength ? lenJ : 1); // 1 for single literal.
                        if (reach > maxReach)
                        {
                            len      = j - i;
                            maxReach = reach;
                            if (maxReach >= pixCount)
                            {
                                break;
                            }
                        }
                    }
                }
                else
                {
                    len = 1;
                }

                // Go with literal or backward reference.
                if (len == 1)
                {
                    AddSingleLiteral(bgra[i], useColorCache, colorCache, refs);
                }
                else
                {
                    refs.Add(PixOrCopy.CreateCopy((uint)offset, (ushort)len));
                    if (useColorCache)
                    {
                        for (j = i; j < i + len; j++)
                        {
                            colorCache.Insert(bgra[j]);
                        }
                    }
                }

                i += len;
            }
        }
        /// <summary>
        /// Compute an LZ77 by forcing matches to happen within a given distance cost.
        /// We therefore limit the algorithm to the lowest 32 values in the PlaneCode definition.
        /// </summary>
        private static void BackwardReferencesLz77Box(int xSize, int ySize, ReadOnlySpan <uint> bgra, int cacheBits, Vp8LHashChain hashChainBest, Vp8LHashChain hashChain, Vp8LBackwardRefs refs)
        {
            int pixelCount = xSize * ySize;

            int[] windowOffsets        = new int[WindowOffsetsSizeMax];
            int[] windowOffsetsNew     = new int[WindowOffsetsSizeMax];
            int   windowOffsetsSize    = 0;
            int   windowOffsetsNewSize = 0;

            short[] counts         = new short[xSize * ySize];
            int     bestOffsetPrev = -1;
            int     bestLengthPrev = -1;

            // counts[i] counts how many times a pixel is repeated starting at position i.
            int i         = pixelCount - 2;
            int countsPos = i;

            counts[countsPos + 1] = 1;
            for (; i >= 0; --i, --countsPos)
            {
                if (bgra[i] == bgra[i + 1])
                {
                    // Max out the counts to MaxLength.
                    counts[countsPos] = counts[countsPos + 1];
                    if (counts[countsPos + 1] != MaxLength)
                    {
                        counts[countsPos]++;
                    }
                }
                else
                {
                    counts[countsPos] = 1;
                }
            }

            // Figure out the window offsets around a pixel. They are stored in a
            // spiraling order around the pixel as defined by DistanceToPlaneCode.
            for (int y = 0; y <= 6; y++)
            {
                for (int x = -6; x <= 6; x++)
                {
                    int offset = (y * xSize) + x;

                    // Ignore offsets that bring us after the pixel.
                    if (offset <= 0)
                    {
                        continue;
                    }

                    int planeCode = DistanceToPlaneCode(xSize, offset) - 1;
                    if (planeCode >= WindowOffsetsSizeMax)
                    {
                        continue;
                    }

                    windowOffsets[planeCode] = offset;
                }
            }

            // For narrow images, not all plane codes are reached, so remove those.
            for (i = 0; i < WindowOffsetsSizeMax; i++)
            {
                if (windowOffsets[i] == 0)
                {
                    continue;
                }

                windowOffsets[windowOffsetsSize++] = windowOffsets[i];
            }

            // Given a pixel P, find the offsets that reach pixels unreachable from P-1
            // with any of the offsets in windowOffsets[].
            for (i = 0; i < windowOffsetsSize; i++)
            {
                bool isReachable = false;
                for (int j = 0; j < windowOffsetsSize && !isReachable; j++)
                {
                    isReachable |= windowOffsets[i] == windowOffsets[j] + 1;
                }

                if (!isReachable)
                {
                    windowOffsetsNew[windowOffsetsNewSize] = windowOffsets[i];
                    ++windowOffsetsNewSize;
                }
            }

            Span <uint> hashChainOffsetLength = hashChain.OffsetLength.GetSpan();

            hashChainOffsetLength[0] = 0;
            for (i = 1; i < pixelCount; i++)
            {
                int  ind;
                int  bestLength = hashChainBest.FindLength(i);
                int  bestOffset = 0;
                bool doCompute  = true;

                if (bestLength >= MaxLength)
                {
                    // Do not recompute the best match if we already have a maximal one in the window.
                    bestOffset = hashChainBest.FindOffset(i);
                    for (ind = 0; ind < windowOffsetsSize; ind++)
                    {
                        if (bestOffset == windowOffsets[ind])
                        {
                            doCompute = false;
                            break;
                        }
                    }
                }

                if (doCompute)
                {
                    // Figure out if we should use the offset/length from the previous pixel
                    // as an initial guess and therefore only inspect the offsets in windowOffsetsNew[].
                    bool usePrev = bestLengthPrev is > 1 and < MaxLength;
                    int  numInd  = usePrev ? windowOffsetsNewSize : windowOffsetsSize;
                    bestLength = usePrev ? bestLengthPrev - 1 : 0;
                    bestOffset = usePrev ? bestOffsetPrev : 0;

                    // Find the longest match in a window around the pixel.
                    for (ind = 0; ind < numInd; ind++)
                    {
                        int currLength = 0;
                        int j          = i;
                        int jOffset    = usePrev ? i - windowOffsetsNew[ind] : i - windowOffsets[ind];
                        if (jOffset < 0 || bgra[jOffset] != bgra[i])
                        {
                            continue;
                        }

                        // The longest match is the sum of how many times each pixel is repeated.
                        do
                        {
                            int countsJOffset = counts[jOffset];
                            int countsJ       = counts[j];
                            if (countsJOffset != countsJ)
                            {
                                currLength += countsJOffset < countsJ ? countsJOffset : countsJ;
                                break;
                            }

                            // The same color is repeated counts_pos times at jOffset and j.
                            currLength += countsJOffset;
                            jOffset    += countsJOffset;
                            j          += countsJOffset;
                        }while (currLength <= MaxLength && j < pixelCount && bgra[jOffset] == bgra[j]);

                        if (bestLength < currLength)
                        {
                            bestOffset = usePrev ? windowOffsetsNew[ind] : windowOffsets[ind];
                            if (currLength >= MaxLength)
                            {
                                bestLength = MaxLength;
                                break;
                            }
                            else
                            {
                                bestLength = currLength;
                            }
                        }
                    }
                }

                if (bestLength <= MinLength)
                {
                    hashChainOffsetLength[i] = 0;
                    bestOffsetPrev           = 0;
                    bestLengthPrev           = 0;
                }
                else
                {
                    hashChainOffsetLength[i] = (uint)((bestOffset << MaxLengthBits) | bestLength);
                    bestOffsetPrev           = bestOffset;
                    bestLengthPrev           = bestLength;
                }
            }

            hashChainOffsetLength[0] = 0;
            BackwardReferencesLz77(xSize, ySize, bgra, cacheBits, hashChain, refs);
        }
        private static void BackwardReferencesHashChainDistanceOnly(
            int xSize,
            int ySize,
            MemoryAllocator memoryAllocator,
            ReadOnlySpan <uint> bgra,
            int cacheBits,
            Vp8LHashChain hashChain,
            Vp8LBackwardRefs refs,
            IMemoryOwner <ushort> distArrayBuffer)
        {
            int    pixCount              = xSize * ySize;
            bool   useColorCache         = cacheBits > 0;
            int    literalArraySize      = WebpConstants.NumLiteralCodes + WebpConstants.NumLengthCodes + (cacheBits > 0 ? 1 << cacheBits : 0);
            var    costModel             = new CostModel(literalArraySize);
            int    offsetPrev            = -1;
            int    lenPrev               = -1;
            double offsetCost            = -1;
            int    firstOffsetIsConstant = -1; // initialized with 'impossible' value.
            int    reach      = 0;
            var    colorCache = new ColorCache();

            if (useColorCache)
            {
                colorCache.Init(cacheBits);
            }

            costModel.Build(xSize, cacheBits, refs);
            using var costManager = new CostManager(memoryAllocator, distArrayBuffer, pixCount, costModel);
            Span <float>  costManagerCosts = costManager.Costs.GetSpan();
            Span <ushort> distArray        = distArrayBuffer.GetSpan();

            // We loop one pixel at a time, but store all currently best points to non-processed locations from this point.
            distArray[0] = 0;

            // Add first pixel as literal.
            AddSingleLiteralWithCostModel(bgra, colorCache, costModel, 0, useColorCache, 0.0f, costManagerCosts, distArray);

            for (int i = 1; i < pixCount; i++)
            {
                float prevCost = costManagerCosts[i - 1];
                int   offset   = hashChain.FindOffset(i);
                int   len      = hashChain.FindLength(i);

                // Try adding the pixel as a literal.
                AddSingleLiteralWithCostModel(bgra, colorCache, costModel, i, useColorCache, prevCost, costManagerCosts, distArray);

                // If we are dealing with a non-literal.
                if (len >= 2)
                {
                    if (offset != offsetPrev)
                    {
                        int code = DistanceToPlaneCode(xSize, offset);
                        offsetCost            = costModel.GetDistanceCost(code);
                        firstOffsetIsConstant = 1;
                        costManager.PushInterval(prevCost + offsetCost, i, len);
                    }
                    else
                    {
                        // Instead of considering all contributions from a pixel i by calling:
                        // costManager.PushInterval(prevCost + offsetCost, i, len);
                        // we optimize these contributions in case offsetCost stays the same
                        // for consecutive pixels. This describes a set of pixels similar to a
                        // previous set (e.g. constant color regions).
                        if (firstOffsetIsConstant != 0)
                        {
                            reach = i - 1 + lenPrev - 1;
                            firstOffsetIsConstant = 0;
                        }

                        if (i + len - 1 > reach)
                        {
                            int lenJ = 0;
                            int j;
                            for (j = i; j <= reach; j++)
                            {
                                int offsetJ = hashChain.FindOffset(j + 1);
                                lenJ = hashChain.FindLength(j + 1);
                                if (offsetJ != offset)
                                {
                                    lenJ = hashChain.FindLength(j);
                                    break;
                                }
                            }

                            // Update the cost at j - 1 and j.
                            costManager.UpdateCostAtIndex(j - 1, false);
                            costManager.UpdateCostAtIndex(j, false);

                            costManager.PushInterval(costManagerCosts[j - 1] + offsetCost, j, lenJ);
                            reach = j + lenJ - 1;
                        }
                    }
                }

                costManager.UpdateCostAtIndex(i, true);
                offsetPrev = offset;
                lenPrev    = len;
            }
        }