/// <summary> /// Given input sentence and generate output sentence by seq2seq model with beam search /// </summary> /// <param name="input"></param> /// <param name="beamSearchSize"></param> /// <param name="maxOutputLength"></param> /// <returns></returns> public List <List <string> > Predict(List <string> input, int beamSearchSize = 1, int maxOutputLength = 100) { (IEncoder encoder, IDecoder decoder, IWeightTensor srcEmbedding, IWeightTensor tgtEmbedding, IWeightTensor posEmbedding) = GetNetworksOnDeviceAt(-1); List <List <string> > inputSeqs = ParallelCorpus.ConstructInputTokens(input); int batchSize = 1; // For predict with beam search, we currently only supports one sentence per call IComputeGraph g = CreateComputGraph(m_defaultDeviceId, needBack: false); AttentionDecoder rnnDecoder = decoder as AttentionDecoder; encoder.Reset(g.GetWeightFactory(), batchSize); rnnDecoder.Reset(g.GetWeightFactory(), batchSize); // Construct beam search status list List <BeamSearchStatus> bssList = new List <BeamSearchStatus>(); BeamSearchStatus bss = new BeamSearchStatus(); bss.OutputIds.Add((int)SENTTAGS.START); bss.CTs = rnnDecoder.GetCTs(); bss.HTs = rnnDecoder.GetHTs(); bssList.Add(bss); IWeightTensor encodedWeightMatrix = Encode(g, inputSeqs, encoder, srcEmbedding, null, posEmbedding, null); AttentionPreProcessResult attPreProcessResult = rnnDecoder.PreProcess(encodedWeightMatrix, batchSize, g); List <BeamSearchStatus> newBSSList = new List <BeamSearchStatus>(); bool finished = false; int outputLength = 0; while (finished == false && outputLength < maxOutputLength) { finished = true; for (int i = 0; i < bssList.Count; i++) { bss = bssList[i]; if (bss.OutputIds[bss.OutputIds.Count - 1] == (int)SENTTAGS.END) { newBSSList.Add(bss); } else if (bss.OutputIds.Count > maxOutputLength) { newBSSList.Add(bss); } else { finished = false; int ix_input = bss.OutputIds[bss.OutputIds.Count - 1]; rnnDecoder.SetCTs(bss.CTs); rnnDecoder.SetHTs(bss.HTs); IWeightTensor x = g.PeekRow(tgtEmbedding, ix_input); IWeightTensor eOutput = rnnDecoder.Decode(x, attPreProcessResult, batchSize, g); using (IWeightTensor probs = g.Softmax(eOutput)) { List <int> preds = probs.GetTopNMaxWeightIdx(beamSearchSize); for (int j = 0; j < preds.Count; j++) { BeamSearchStatus newBSS = new BeamSearchStatus(); newBSS.OutputIds.AddRange(bss.OutputIds); newBSS.OutputIds.Add(preds[j]); newBSS.CTs = rnnDecoder.GetCTs(); newBSS.HTs = rnnDecoder.GetHTs(); float score = probs.GetWeightAt(preds[j]); newBSS.Score = bss.Score; newBSS.Score += (float)(-Math.Log(score)); //var lengthPenalty = Math.Pow((5.0f + newBSS.OutputIds.Count) / 6, 0.6); //newBSS.Score /= (float)lengthPenalty; newBSSList.Add(newBSS); } } } } bssList = BeamSearch.GetTopNBSS(newBSSList, beamSearchSize); newBSSList.Clear(); outputLength++; } // Convert output target word ids to real string List <List <string> > results = new List <List <string> >(); for (int i = 0; i < bssList.Count; i++) { results.Add(m_modelMetaData.Vocab.ConvertTargetIdsToString(bssList[i].OutputIds)); } return(results); }
/// <summary> /// Run forward part on given single device /// </summary> /// <param name="computeGraph">The computing graph for current device. It gets created and passed by the framework</param> /// <param name="srcSnts">A batch of input tokenized sentences in source side</param> /// <param name="tgtSnts">A batch of output tokenized sentences in target side</param> /// <param name="deviceIdIdx">The index of current device</param> /// <returns>The cost of forward part</returns> public override List <NetworkResult> RunForwardOnSingleDevice(IComputeGraph computeGraph, ISntPairBatch sntPairBatch, int deviceIdIdx, bool isTraining, DecodingOptions decodingOptions) { (var encoder, var decoder, var decoderFFLayer, var srcEmbedding, var tgtEmbedding, var posEmbedding, var segmentEmbedding, var pointerGenerator) = GetNetworksOnDeviceAt(deviceIdIdx); var srcSnts = sntPairBatch.GetSrcTokens(0); var originalSrcLengths = BuildInTokens.PadSentences(srcSnts); var srcTokensList = m_modelMetaData.SrcVocab.GetWordIndex(srcSnts); if (isTraining && srcSnts[0].Count > m_options.MaxTrainSrcSentLength + 2) { throw new InvalidDataException($"The source sentence is too long. Its length = '{srcSnts[0].Count}', but MaxTrainSrcSentLength is '{m_options.MaxTrainSrcSentLength}'. The sentence is '{string.Join(" ", srcSnts[0])}'"); } IWeightTensor encOutput; if (!isTraining && (m_options.ProcessorType == ProcessorTypeEnums.CPU)) { // Try to get src tensor from cache string cacheKey = GenerateCacheKey(srcSnts); if (!m_memoryCache.TryGetValue(cacheKey, out encOutput)) { encOutput = Encoder.Run(computeGraph, sntPairBatch, encoder, m_modelMetaData, m_shuffleType, srcEmbedding, posEmbedding, segmentEmbedding, srcTokensList, originalSrcLengths); var cacheEntryOptions = new MemoryCacheEntryOptions().SetSize(1); m_memoryCache.Set(cacheKey, encOutput.CopyWeightsRef($"cache_{encOutput.Name}", false), cacheEntryOptions); } } else { // Compute src tensor encOutput = Encoder.Run(computeGraph, sntPairBatch, encoder, m_modelMetaData, m_shuffleType, srcEmbedding, posEmbedding, segmentEmbedding, srcTokensList, originalSrcLengths); } List <NetworkResult> nrs = new List <NetworkResult>(); // Generate output decoder sentences int batchSize = srcSnts.Count; var tgtSnts = sntPairBatch.GetTgtTokens(0); var tgtTokensList = m_modelMetaData.TgtVocab.GetWordIndex(tgtSnts); NetworkResult nr = new NetworkResult(); decoder.Reset(computeGraph.GetWeightFactory(), srcSnts.Count); if (decoder is AttentionDecoder) { nr.Cost = Decoder.DecodeAttentionLSTM(tgtTokensList, computeGraph, encOutput, decoder as AttentionDecoder, decoderFFLayer, tgtEmbedding, m_modelMetaData.TgtVocab, srcSnts.Count, isTraining); nr.Output = new List <List <List <string> > > { m_modelMetaData.TgtVocab.ConvertIdsToString(tgtTokensList) }; } else { if (isTraining) { (var c, _) = Decoder.DecodeTransformer(tgtTokensList, computeGraph, encOutput, decoder as TransformerDecoder, decoderFFLayer, tgtEmbedding, posEmbedding, originalSrcLengths, m_modelMetaData.TgtVocab, m_shuffleType, m_options.DropoutRatio, null, isTraining, pointerGenerator: pointerGenerator, srcSeqs: srcTokensList); nr.Cost = c; nr.Output = null; } else { Dictionary <string, IWeightTensor> cachedTensors = new Dictionary <string, IWeightTensor>(); List <List <BeamSearchStatus> > beam2batchStatus = Decoder.InitBeamSearchStatusListList(batchSize, tgtTokensList); for (int i = tgtTokensList[0].Count; i < decodingOptions.MaxTgtSentLength; i++) { List <List <BeamSearchStatus> > batch2beam2seq = null; //(batch_size, beam_search_size) try { foreach (var batchStatus in beam2batchStatus) { var batch2tgtTokens = Decoder.ExtractBatchTokens(batchStatus); using var g = computeGraph.CreateSubGraph($"TransformerDecoder_Step_{i}"); (var cost2, var bssSeqList) = Decoder.DecodeTransformer(batch2tgtTokens, g, encOutput, decoder as TransformerDecoder, decoderFFLayer, tgtEmbedding, posEmbedding, originalSrcLengths, m_modelMetaData.TgtVocab, m_shuffleType, 0.0f, decodingOptions, isTraining, outputSentScore: decodingOptions.BeamSearchSize > 1, previousBeamSearchResults: batchStatus, pointerGenerator: pointerGenerator, srcSeqs: srcTokensList, cachedTensors: cachedTensors); bssSeqList = Decoder.SwapBeamAndBatch(bssSeqList); // Swap shape: (beam_search_size, batch_size) -> (batch_size, beam_search_size) batch2beam2seq = Decoder.CombineBeamSearchResults(batch2beam2seq, bssSeqList); } } catch (OutOfMemoryException) { GC.Collect(); Logger.WriteLine(Logger.Level.warn, $"We have out of memory while generating '{i}th' tokens, so terminate decoding for current sequences."); break; } if (decodingOptions.BeamSearchSize > 1) { // Keep top N result and drop all others for (int k = 0; k < batchSize; k++) { batch2beam2seq[k] = BeamSearch.GetTopNBSS(batch2beam2seq[k], decodingOptions.BeamSearchSize); } } beam2batchStatus = Decoder.SwapBeamAndBatch(batch2beam2seq); if (Decoder.AreAllSentsCompleted(beam2batchStatus)) { break; } } nr.Cost = 0.0f; nr.Output = m_modelMetaData.TgtVocab.ExtractTokens(beam2batchStatus); if (cachedTensors != null) { foreach (var pair in cachedTensors) { pair.Value.Dispose(); } } } } nr.RemoveDuplicatedEOS(); nrs.Add(nr); return(nrs); }