/// <summary> /// Finds contained elements. /// </summary> /// <param name="ifcRelHandle">The relation handle.</param> void ProcessIFCRelContainedInSpatialStructure(IFCAnyHandle ifcRelHandle) { HashSet <IFCAnyHandle> elemSet = IFCAnyHandleUtil.GetAggregateInstanceAttribute <HashSet <IFCAnyHandle> >(ifcRelHandle, "RelatedElements"); if (elemSet == null) { Importer.TheLog.LogMissingRequiredAttributeError(ifcRelHandle, "RelatedElements", false); return; } foreach (IFCAnyHandle elem in elemSet) { try { IFCProduct product = IFCProduct.ProcessIFCProduct(elem); if (product != null) { product.ContainingStructure = this; m_IFCProducts.Add(product); } } catch (Exception ex) { Importer.TheLog.LogError(elem.StepId, ex.Message, false); } } }
public static void CheckObjectPlacementIsRelativeToSite(IFCProduct productEntity, int productStepId, int objectPlacementStepId) { IFCLocation productEntityLocation = productEntity.ObjectLocation; if (ActiveSite != null && productEntityLocation != null && productEntityLocation.RelativeToSite == false) { if (!(productEntity is IFCSite)) { IFCLocation activeSiteLocation = ActiveSite.ObjectLocation; if (activeSiteLocation != null) { Importer.TheLog.LogWarning(productStepId, "The local placement (#" + objectPlacementStepId + ") of this entity was not relative to the IfcSite's local placement, patching.", false); Transform siteTransform = activeSiteLocation.TotalTransform; if (siteTransform != null) { Transform siteTransformInverse = siteTransform.Inverse; Transform originalTotalTransform = productEntityLocation.TotalTransform; if (originalTotalTransform == null) { productEntityLocation.RelativeTransform = siteTransformInverse; } else { productEntityLocation.RelativeTransform = originalTotalTransform.Multiply(siteTransformInverse); } } productEntityLocation.RelativeTo = activeSiteLocation; } } productEntityLocation.RelativeToSite = true; } }
/// <summary> /// Processes IfcObject handle. /// </summary> /// <param name="ifcObject">The IfcObject handle.</param> /// <returns>The IfcObject object.</returns> public static IFCObject ProcessIFCObject(IFCAnyHandle ifcObject) { if (IFCAnyHandleUtil.IsNullOrHasNoValue(ifcObject)) { IFCImportFile.TheLog.LogNullError(IFCEntityType.IfcObject); return(null); } IFCEntity cachedObject; if (IFCImportFile.TheFile.EntityMap.TryGetValue(ifcObject.StepId, out cachedObject)) { return(cachedObject as IFCObject); } if (IFCAnyHandleUtil.IsSubTypeOf(ifcObject, IFCEntityType.IfcProduct)) { return(IFCProduct.ProcessIFCProduct(ifcObject)); } else if (IFCAnyHandleUtil.IsSubTypeOf(ifcObject, IFCEntityType.IfcProject)) { return(IFCProject.ProcessIFCProject(ifcObject)); } IFCImportFile.TheLog.LogUnhandledSubTypeError(ifcObject, IFCEntityType.IfcObject, true); return(null); }
// TODO: handle SiteAddress. /// <summary> /// Check if an object placement is relative to the site's placement, and fix it if necessary. /// </summary> /// <param name="productEntity">The entity being checked.</param> /// <param name="productStepId">The id of the entity being checked.</param> /// <param name="objectPlacement">The object placement handle.</param> public static void CheckObjectPlacementIsRelativeToSite(IFCProduct productEntity, int productStepId, IFCAnyHandle objectPlacement) { if (BaseSiteOffset == null) { return; } IFCLocation productEntityLocation = productEntity.ObjectLocation; if (productEntityLocation != null && productEntityLocation.RelativeToSite == false) { if (!(productEntity is IFCSite)) { if (!IFCAnyHandleUtil.IsSubTypeOf(objectPlacement, IFCEntityType.IfcGridPlacement)) { Importer.TheLog.LogWarning(productStepId, "The local placement (#" + objectPlacement.StepId + ") of this entity was not relative to the IfcSite's local placement, patching.", false); } if (productEntityLocation.RelativeTransform == null) { productEntityLocation.RelativeTransform = Transform.CreateTranslation(-BaseSiteOffset); } else { productEntityLocation.RelativeTransform.Origin -= BaseSiteOffset; } } productEntityLocation.RelativeToSite = true; } }
/// <summary> /// Create a copying of the geometry of an entity with a different graphics style. /// </summary> /// <param name="doc">The document.</param> /// <param name="original">The IFCProduct we are partially copying.</param> /// <param name="parentEntity">The IFCObjectDefinition we are going to add the geometry to.</param> /// <param name="cloneParentMaterial">Determine whether to use the one material of the parent entity, if it exists and is unique.</param> /// <returns>The list of geometries created with a new category and possibly material.</returns> public static IList <IFCSolidInfo> CloneElementGeometry(Document doc, IFCProduct original, IFCObjectDefinition parentEntity, bool cloneParentMaterial) { using (TemporaryDisableLogging disableLogging = new TemporaryDisableLogging()) { IFCElement clone = new IFCElement(); // Note that the GlobalId is left to null here; this allows us to later decide not to create a DirectShape for the result. // Get the ObjectLocation and ProductRepresentation from the original entity, which is all we need to create geometry. clone.ObjectLocation = original.ObjectLocation; clone.ProductRepresentation = original.ProductRepresentation; clone.MaterialSelect = original.MaterialSelect; // Get the EntityType and PredefinedType from the parent to ensure that it "matches" the category and graphics style of the parent. clone.EntityType = parentEntity.EntityType; clone.PredefinedType = parentEntity.PredefinedType; if (cloneParentMaterial) { // This will only work if the parent entity has one material. IFCMaterial parentMaterial = parentEntity.GetTheMaterial(); if (parentMaterial != null) { clone.MaterialSelect = parentMaterial; } } IList <GeometryObject> geomObjs = new List <GeometryObject>(); CreateElement(doc, clone); return(clone.Solids); } }
public static void WarnIfFaraway(IFCProduct product) { XYZ origin = product?.ObjectLocation?.TotalTransform?.Origin; if (origin != null && !XYZ.IsWithinLengthLimits(origin)) { Importer.TheLog.LogWarning(product.Id, "This entity has an origin that is outside of Revit's creation limits. This could result in bad graphical display of geometry.", false); } }
/// <summary> /// Get the curve from the Axis representation of the given IfcProduct, transformed to the current local coordinate system. /// </summary> /// <param name="creator">The IfcProduct that may or may not contain a valid axis curve.</param> /// <param name="lcs">The local coordinate system.</param> /// <returns>The axis curve, if found, and valid.</returns> /// <remarks>In this case, we only allow bounded curves to be valid axis curves. /// The Curve may be contained as either a single Curve in the IFCCurve representation item, /// or it could be an open CurveLoop that could be represented as a single curve.</remarks> private Curve GetAxisCurve(IFCProduct creator, Transform lcs) { // We need an axis curve to clip the extrusion profiles; if we can't get one, fail IFCProductRepresentation productRepresentation = creator.ProductRepresentation; if (productRepresentation == null) { return(null); } IList <IFCRepresentation> representations = productRepresentation.Representations; if (representations == null) { return(null); } foreach (IFCRepresentation representation in representations) { // Go through the list of representations for this product, to find the Axis representation. if (representation == null || representation.Identifier != IFCRepresentationIdentifier.Axis) { continue; } IList <IFCRepresentationItem> items = representation.RepresentationItems; if (items == null) { continue; } // Go through the list of representation items in the Axis representation, to look for the IfcCurve. foreach (IFCRepresentationItem item in items) { if (item is IFCCurve) { // We will accept a bounded curve, or an open CurveLoop that can be represented // as one curve. IFCCurve ifcCurve = item as IFCCurve; Curve axisCurve = ifcCurve.Curve; if (axisCurve == null) { axisCurve = ifcCurve.ConvertCurveLoopIntoSingleCurve(); } if (axisCurve != null) { return(axisCurve.CreateTransformed(lcs)); } } } } return(null); }
public static void CheckObjectPlacementIsRelativeToSite(IFCProduct productEntity, int productStepId, int objectPlacementStepId) { if (IFCSite.ActiveSiteSetter.ActiveSite != null && productEntity.ObjectLocation.RelativeToSite == false) { if (productEntity is IFCSite) { productEntity.ObjectLocation.RelativeToSite = true; } else { Importer.TheLog.LogWarning(productStepId, "The local placement (#" + objectPlacementStepId + ") of this entity is not relative to the IfcSite's local placement.", false); IFCSite.ActiveSiteSetter.ActiveSite.CanRemoveSiteLocalPlacement = false; } } }
/// <summary> /// Creates a Revit material based on the information contained in this class. /// </summary> /// <param name="doc">The document.</param> public void Create(IFCImportShapeEditScope shapeEditScope) { // TODO: support cut pattern id and cut pattern color. if (m_CreatedElementId != ElementId.InvalidElementId || !IsValidForCreation) { return; } try { // If the styled item or the surface style has a name, use it. IFCSurfaceStyle surfaceStyle = GetSurfaceStyle(); if (surfaceStyle == null) { // We only handle surface styles at the moment; log file should already reflect any other unhandled styles. IsValidForCreation = true; return; } string forcedName = surfaceStyle.Name; if (string.IsNullOrWhiteSpace(forcedName)) { forcedName = Name; } string suggestedName = null; if (Item != null) { IFCProduct creator = shapeEditScope.Creator; suggestedName = creator.GetTheMaterialName(); } m_CreatedElementId = surfaceStyle.Create(shapeEditScope.Document, forcedName, suggestedName, Id); } catch (Exception ex) { IsValidForCreation = false; Importer.TheLog.LogCreationError(this, ex.Message, false); } }
/// <summary> /// The constructor. /// </summary> public IFCLocationChecker(IFCProduct product) { LastFixFarawayLocationOrigin = FixFarawayLocationOrigin; FixFarawayLocationOrigin = (product != null) && ((product is IFCBuilding) || (product is IFCBuildingStorey)); }
protected IFCImportShapeEditScope(Document doc, IFCProduct creator) { Document = doc; Creator = creator; SetIFCFuzzyXYZEpsilon(); }
/// <summary> /// Get the curve from the Axis representation of the given IfcProduct, transformed to the current local coordinate system. /// </summary> /// <param name="creator">The IfcProduct that may or may not contain a valid axis curve.</param> /// <param name="lcs">The local coordinate system.</param> /// <returns>The axis curve, if found, and valid.</returns> /// <remarks>In this case, we only allow bounded lines and arcs to be valid axis curves, as per IFC2x3 convention. /// The Curve may be contained as either a single Curve in the IFCCurve representation item, or it could be an /// open CurveLoop with one item.</remarks> private Curve GetAxisCurve(IFCProduct creator, Transform lcs) { // We need an axis curve to clip the extrusion profiles; if we can't get one, fail IFCProductRepresentation productRepresentation = creator.ProductRepresentation; if (productRepresentation == null) return null; IList<IFCRepresentation> representations = productRepresentation.Representations; if (representations == null) return null; foreach (IFCRepresentation representation in representations) { // Go through the list of representations for this product, to find the Axis representation. if (representation == null || representation.Identifier != IFCRepresentationIdentifier.Axis) continue; IList<IFCRepresentationItem> items = representation.RepresentationItems; if (items == null) continue; // Go through the list of representation items in the Axis representation, to look for the IfcCurve. foreach (IFCRepresentationItem item in items) { if (item is IFCCurve) { // We will accept either a bounded Curve of type Line or Arc, // or an open CurveLoop with one curve that satisfies the same condition. IFCCurve ifcCurve = item as IFCCurve; Curve axisCurve = ifcCurve.Curve; if (axisCurve == null) { CurveLoop axisCurveLoop = ifcCurve.CurveLoop; if (axisCurveLoop != null && axisCurveLoop.IsOpen() && axisCurveLoop.Count() == 1) { axisCurve = axisCurveLoop.First(); if (!(axisCurve is Line || axisCurve is Arc)) axisCurve = null; } } if (axisCurve != null) return axisCurve.CreateTransformed(lcs); } } } return null; }
// End temporary classes for holding BRep information. protected IFCImportShapeEditScope(Document doc, IFCProduct creator) { Document = doc; Creator = creator; // Note that this tolerance is larger than required for meshes, and slightly larger than // required for BReps, as it is a cube instead of a sphere of equivalence. However, we are // generally trying to create Solids over Meshes, and as such we try for Solid tolerances. IFCFuzzyXYZEpsilon = IFCImportFile.TheFile.Document.Application.ShortCurveTolerance; }
/// <summary> /// Create a copying of the geometry of an entity with a different graphics style. /// </summary> /// <param name="doc">The document.</param> /// <param name="original">The IFCProduct we are partially copying.</param> /// <param name="parentEntity">The IFCObjectDefinition we are going to add the geometry to.</param> /// <param name="cloneParentMaterial">Determine whether to use the one material of the parent entity, if it exists and is unique.</param> /// <returns>The list of geometries created with a new category and possibly material.</returns> public static IList<IFCSolidInfo> CloneElementGeometry(Document doc, IFCProduct original, IFCObjectDefinition parentEntity, bool cloneParentMaterial) { using (TemporaryDisableLogging disableLogging = new TemporaryDisableLogging()) { IFCElement clone = new IFCElement(); // Note that the GlobalId is left to null here; this allows us to later decide not to create a DirectShape for the result. // Get the ObjectLocation and ProductRepresentation from the original entity, which is all we need to create geometry. clone.ObjectLocation = original.ObjectLocation; clone.ProductRepresentation = original.ProductRepresentation; clone.MaterialSelect = original.MaterialSelect; // Get the EntityType and PredefinedType from the parent to ensure that it "matches" the category and graphics style of the parent. clone.EntityType = parentEntity.EntityType; clone.PredefinedType = parentEntity.PredefinedType; if (cloneParentMaterial) { // This will only work if the parent entity has one material. IFCMaterial parentMaterial = parentEntity.GetTheMaterial(); if (parentMaterial != null) clone.MaterialSelect = parentMaterial; } IList<GeometryObject> geomObjs = new List<GeometryObject>(); CreateElement(doc, clone); return clone.Solids; } }
/// <summary> /// Get the curve from the Axis representation of the given IfcProduct, transformed to the current local coordinate system. /// </summary> /// <param name="creator">The IfcProduct that may or may not contain a valid axis curve.</param> /// <param name="lcs">The local coordinate system.</param> /// <returns>The axis curve, if found, and valid.</returns> /// <remarks>In this case, we only allow bounded lines and arcs to be valid axis curves, as per IFC2x3 convention. /// The Curve may be contained as either a single Curve in the IFCCurve representation item, or it could be an /// open CurveLoop with one item.</remarks> private Curve GetAxisCurve(IFCProduct creator, Transform lcs) { // We need an axis curve to clip the extrusion profiles; if we can't get one, fail IFCProductRepresentation productRepresentation = creator.ProductRepresentation; if (productRepresentation == null) { return(null); } IList <IFCRepresentation> representations = productRepresentation.Representations; if (representations == null) { return(null); } foreach (IFCRepresentation representation in representations) { // Go through the list of representations for this product, to find the Axis representation. if (representation == null || representation.Identifier != IFCRepresentationIdentifier.Axis) { continue; } IList <IFCRepresentationItem> items = representation.RepresentationItems; if (items == null) { continue; } // Go through the list of representation items in the Axis representation, to look for the IfcCurve. foreach (IFCRepresentationItem item in items) { if (item is IFCCurve) { // We will accept either a bounded Curve of type Line or Arc, // or an open CurveLoop with one curve that satisfies the same condition. IFCCurve ifcCurve = item as IFCCurve; Curve axisCurve = ifcCurve.Curve; if (axisCurve == null) { CurveLoop axisCurveLoop = ifcCurve.CurveLoop; if (axisCurveLoop != null && axisCurveLoop.IsOpen() && axisCurveLoop.Count() == 1) { axisCurve = axisCurveLoop.First(); if (!(axisCurve is Line || axisCurve is Arc)) { axisCurve = null; } } } if (axisCurve != null) { return(axisCurve.CreateTransformed(lcs)); } } } } return(null); }
// This routine may return null geometry for one of three reasons: // 1. Invalid input. // 2. No IfcMaterialLayerUsage. // 3. The IfcMaterialLayerUsage isn't handled. // If the reason is #1 or #3, we want to warn the user. If it is #2, we don't. Pass back shouldWarn to let the caller know. private IList <GeometryObject> CreateGeometryFromMaterialLayerUsage(IFCImportShapeEditScope shapeEditScope, Transform extrusionPosition, IList <CurveLoop> loops, XYZ extrusionDirection, double currDepth, out ElementId materialId, out bool shouldWarn) { IList <GeometryObject> extrusionSolids = null; materialId = ElementId.InvalidElementId; try { shouldWarn = true; // Invalid input. // Check for valid input. if (shapeEditScope == null || extrusionPosition == null || loops == null || loops.Count() == 0 || extrusionDirection == null || !Application.IsValidThickness(currDepth)) { return(null); } IFCProduct creator = shapeEditScope.Creator; if (creator == null) { return(null); } shouldWarn = false; // Missing, empty, or optimized out IfcMaterialLayerSetUsage - valid reason to stop. IIFCMaterialSelect materialSelect = creator.MaterialSelect; if (materialSelect == null) { return(null); } IFCMaterialLayerSetUsage materialLayerSetUsage = materialSelect as IFCMaterialLayerSetUsage; if (materialLayerSetUsage == null) { return(null); } IFCMaterialLayerSet materialLayerSet = materialLayerSetUsage.MaterialLayerSet; if (materialLayerSet == null) { return(null); } IList <IFCMaterialLayer> materialLayers = materialLayerSet.MaterialLayers; if (materialLayers == null || materialLayers.Count == 0) { return(null); } // Optimization: if there is only one layer, use the standard method, with possibly an overloaded material. ElementId baseMaterialId = GetMaterialElementId(shapeEditScope); if (materialLayers.Count == 1) { IFCMaterial oneMaterial = materialLayers[0].Material; if (oneMaterial == null) { return(null); } materialId = oneMaterial.GetMaterialElementId(); if (materialId != ElementId.InvalidElementId) { // We will not override the material of the element if the layer material has no color. if (Importer.TheCache.MaterialsWithNoColor.Contains(materialId)) { materialId = ElementId.InvalidElementId; } } return(null); } // Anything below here is something we should report to the user, with the exception of the total thickness // not matching the extrusion thickness. This would require more analysis to determine that it is actually // an error condition. shouldWarn = true; IList <IFCMaterialLayer> realMaterialLayers = new List <IFCMaterialLayer>(); double totalThickness = 0.0; foreach (IFCMaterialLayer materialLayer in materialLayers) { double depth = materialLayer.LayerThickness; if (MathUtil.IsAlmostZero(depth)) { continue; } if (depth < 0.0) { return(null); } realMaterialLayers.Add(materialLayer); totalThickness += depth; } // Axis3 means that the material layers are stacked in the Z direction. This is common for floor slabs. bool isAxis3 = (materialLayerSetUsage.Direction == IFCLayerSetDirection.Axis3); // For elements extruded in the Z direction, if the extrusion layers don't have the same thickness as the extrusion, // this could be one of two reasons: // 1. There is a discrepancy between the extrusion depth and the material layer set usage calculated depth. // 2. There are multiple extrusions in the body definition. // In either case, we will use the extrusion geometry over the calculated material layer set usage geometry. // In the future, we may decide to allow for case #1 by passing in a flag to allow for this. if (isAxis3 && !MathUtil.IsAlmostEqual(totalThickness, currDepth)) { shouldWarn = false; return(null); } int numLayers = realMaterialLayers.Count(); if (numLayers == 0) { return(null); } // We'll use this initial value for the Axis2 case, so read it here. double baseOffsetForLayer = materialLayerSetUsage.Offset; // Needed for Axis2 case only. The axisCurve is the curve defined in the product representation representing // a base curve (an axis) for the footprint of the element. Curve axisCurve = null; // The oriented cuve list represents the 4 curves of supported Axis2 footprint in the following order: // 1. curve along length of object closest to the first material layer with the orientation of the axis curve // 2. connecting end curve // 3. curve along length of object closest to the last material layer with the orientation opposite of the axis curve // 4. connecting end curve. IList <Curve> orientedCurveList = null; if (!isAxis3) { // Axis2 means that the material layers are stacked inthe Y direction. This is by definition for IfcWallStandardCase, // which has a local coordinate system whose Y direction is orthogonal to the length of the wall. if (materialLayerSetUsage.Direction == IFCLayerSetDirection.Axis2) { axisCurve = GetAxisCurve(creator, extrusionPosition); if (axisCurve == null) { return(null); } orientedCurveList = GetOrientedCurveList(loops, axisCurve, extrusionPosition.BasisZ, baseOffsetForLayer, totalThickness); if (orientedCurveList == null) { return(null); } } else { return(null); // Not handled. } } extrusionSolids = new List <GeometryObject>(); bool positiveOrientation = (materialLayerSetUsage.DirectionSense == IFCDirectionSense.Positive); // Always extrude in the positive direction for Axis2. XYZ materialExtrusionDirection = (positiveOrientation || !isAxis3) ? extrusionDirection : -extrusionDirection; // Axis2 repeated values. // The IFC concept of offset direction is reversed from Revit's. XYZ normalDirectionForAxis2 = positiveOrientation ? -extrusionPosition.BasisZ : extrusionPosition.BasisZ; bool axisIsCyclic = (axisCurve == null) ? false : axisCurve.IsCyclic; double axisCurvePeriod = axisIsCyclic ? axisCurve.Period : 0.0; Transform curveLoopTransform = Transform.Identity; IList <CurveLoop> currLoops = null; double depthSoFar = 0.0; for (int ii = 0; ii < numLayers; ii++) { IFCMaterialLayer materialLayer = materialLayers[ii]; // Ignore 0 thickness layers. No need to warn. double depth = materialLayer.LayerThickness; if (MathUtil.IsAlmostZero(depth)) { continue; } // If the thickness is non-zero but invalid, fail. if (!Application.IsValidThickness(depth)) { return(null); } double extrusionDistance = 0.0; if (isAxis3) { // Offset the curve loops if necessary, using the base extrusionDirection, regardless of the direction sense // of the MaterialLayerSetUsage. double offsetForLayer = positiveOrientation ? baseOffsetForLayer + depthSoFar : baseOffsetForLayer - depthSoFar; if (!MathUtil.IsAlmostZero(offsetForLayer)) { curveLoopTransform.Origin = offsetForLayer * extrusionDirection; currLoops = new List <CurveLoop>(); foreach (CurveLoop loop in loops) { CurveLoop newLoop = CurveLoop.CreateViaTransform(loop, curveLoopTransform); if (newLoop == null) { return(null); } currLoops.Add(newLoop); } } else { currLoops = loops; } extrusionDistance = depth; } else { // startClipCurve, firstEndCapCurve, endClipCurve, secondEndCapCurve. Curve[] outline = new Curve[4]; double[][] endParameters = new double[4][]; double startClip = depthSoFar; double endClip = depthSoFar + depth; outline[0] = orientedCurveList[0].CreateOffset(startClip, normalDirectionForAxis2); outline[1] = orientedCurveList[1].Clone(); outline[2] = orientedCurveList[2].CreateOffset(totalThickness - endClip, normalDirectionForAxis2); outline[3] = orientedCurveList[3].Clone(); for (int jj = 0; jj < 4; jj++) { outline[jj].MakeUnbound(); endParameters[jj] = new double[2]; endParameters[jj][0] = 0.0; endParameters[jj][1] = 0.0; } // Trim/Extend the curves so that they make a closed loop. for (int jj = 0; jj < 4; jj++) { IntersectionResultArray resultArray = null; outline[jj].Intersect(outline[(jj + 1) % 4], out resultArray); if (resultArray == null || resultArray.Size == 0) { return(null); } int numResults = resultArray.Size; if ((numResults > 1 && !axisIsCyclic) || (numResults > 2)) { return(null); } UV intersectionPoint = resultArray.get_Item(0).UVPoint; endParameters[jj][1] = intersectionPoint.U; endParameters[(jj + 1) % 4][0] = intersectionPoint.V; if (numResults == 2) { // If the current result is closer to the end of the curve, keep it. UV newIntersectionPoint = resultArray.get_Item(1).UVPoint; int endParamIndex = (jj % 2); double newParamToCheck = newIntersectionPoint[endParamIndex]; double oldParamToCheck = (endParamIndex == 0) ? endParameters[jj][1] : endParameters[(jj + 1) % 4][0]; double currentEndPoint = (endParamIndex == 0) ? orientedCurveList[jj].GetEndParameter(1) : orientedCurveList[(jj + 1) % 4].GetEndParameter(0); // Put in range of [-Period/2, Period/2]. double newDist = (currentEndPoint - newParamToCheck) % axisCurvePeriod; if (newDist < -axisCurvePeriod / 2.0) { newDist += axisCurvePeriod; } if (newDist > axisCurvePeriod / 2.0) { newDist -= axisCurvePeriod; } double oldDist = (currentEndPoint - oldParamToCheck) % axisCurvePeriod; if (oldDist < -axisCurvePeriod / 2.0) { oldDist += axisCurvePeriod; } if (oldDist > axisCurvePeriod / 2.0) { oldDist -= axisCurvePeriod; } if (Math.Abs(newDist) < Math.Abs(oldDist)) { endParameters[jj][1] = newIntersectionPoint.U; endParameters[(jj + 1) % 4][0] = newIntersectionPoint.V; } } } CurveLoop newCurveLoop = new CurveLoop(); for (int jj = 0; jj < 4; jj++) { if (endParameters[jj][1] < endParameters[jj][0]) { if (!outline[jj].IsCyclic) { return(null); } endParameters[jj][1] += Math.Floor(endParameters[jj][0] / axisCurvePeriod + 1.0) * axisCurvePeriod; } outline[jj].MakeBound(endParameters[jj][0], endParameters[jj][1]); newCurveLoop.Append(outline[jj]); } currLoops = new List <CurveLoop>(); currLoops.Add(newCurveLoop); extrusionDistance = currDepth; } // Determine the material id. IFCMaterial material = materialLayer.Material; ElementId layerMaterialId = (material == null) ? ElementId.InvalidElementId : material.GetMaterialElementId(); // The second option here is really for Referencing. Without a UI (yet) to determine whether to show the base // extusion or the layers for objects with material layer sets, we've chosen to display the base material if the layer material // has no color information. This means that the layer is assigned the "wrong" material, but looks better on screen. // We will reexamine this decision (1) for the Open case, (2) if there is UI to toggle between layers and base extrusion, or // (3) based on user feedback. if (layerMaterialId == ElementId.InvalidElementId || Importer.TheCache.MaterialsWithNoColor.Contains(layerMaterialId)) { layerMaterialId = baseMaterialId; } SolidOptions solidOptions = new SolidOptions(layerMaterialId, shapeEditScope.GraphicsStyleId); // Create the extrusion for the material layer. GeometryObject extrusionSolid = GeometryCreationUtilities.CreateExtrusionGeometry( currLoops, materialExtrusionDirection, extrusionDistance, solidOptions); if (extrusionSolid == null) { return(null); } extrusionSolids.Add(extrusionSolid); depthSoFar += depth; } } catch { // Ignore the specific exception, but let the user know there was a problem processing the IfcMaterialLayerSetUsage. shouldWarn = true; return(null); } return(extrusionSolids); }
/// <summary> /// Create a new edit scope. Intended to be used with the "using" keyword. /// </summary> /// <param name="doc">The import document.</param> /// <param name="action">The name of the current action.</param> /// <param name="creator">The entity being processed.</param> /// <returns>The new edit scope.</returns> static public IFCImportShapeEditScope Create(Document doc, IFCProduct creator) { return new IFCImportShapeEditScope(doc, creator); }