/** * <summary>Recursive method for computing the agent neighbors of the * specified agent.</summary> * * <param name="agent">The agent for which agent neighbors are to be * computed.</param> * <param name="rangeSq">The squared range around the agent.</param> * <param name="node">The current agent k-D tree node index.</param> */ private void QueryAgentTreeRecursive(Agent agent, ref float rangeSq, int node) { if (_agentTree[node].End - _agentTree[node].Begin <= MaxLeafSize) { for (int i = _agentTree[node].Begin; i < _agentTree[node].End; ++i) { agent.InsertAgentNeighbor(_agents[i], ref rangeSq); } } else { float distSqLeft = RVOMath.Sqr(Math.Max(0.0f, _agentTree[_agentTree[node].Left].MinX - agent.Position.X)) + RVOMath.Sqr(Math.Max(0.0f, agent.Position.X - _agentTree[_agentTree[node].Left].MaxX)) + RVOMath.Sqr(Math.Max(0.0f, _agentTree[_agentTree[node].Left].MinY - agent.Position.Y)) + RVOMath.Sqr(Math.Max(0.0f, agent.Position.Y - _agentTree[_agentTree[node].Left].MaxY)); float distSqRight = RVOMath.Sqr(Math.Max(0.0f, _agentTree[_agentTree[node].Right].MinX - agent.Position.X)) + RVOMath.Sqr(Math.Max(0.0f, agent.Position.X - _agentTree[_agentTree[node].Right].MaxX)) + RVOMath.Sqr(Math.Max(0.0f, _agentTree[_agentTree[node].Right].MinY - agent.Position.Y)) + RVOMath.Sqr(Math.Max(0.0f, agent.Position.Y - _agentTree[_agentTree[node].Right].MaxY)); if (distSqLeft < distSqRight) { if (distSqLeft < rangeSq) { QueryAgentTreeRecursive(agent, ref rangeSq, _agentTree[node].Left); if (distSqRight < rangeSq) { QueryAgentTreeRecursive(agent, ref rangeSq, _agentTree[node].Right); } } } else { if (distSqRight < rangeSq) { QueryAgentTreeRecursive(agent, ref rangeSq, _agentTree[node].Right); if (distSqLeft < rangeSq) { QueryAgentTreeRecursive(agent, ref rangeSq, _agentTree[node].Left); } } } } }
/** * <summary>Recursive method for querying the visibility between two * points within a specified radius.</summary> * * <returns>True if q1 and q2 are mutually visible within the radius; * false otherwise.</returns> * * <param name="q1">The first point between which visibility is to be * tested.</param> * <param name="q2">The second point between which visibility is to be * tested.</param> * <param name="radius">The radius within which visibility is to be * tested.</param> * <param name="node">The current obstacle k-D node.</param> */ private static bool QueryVisibilityRecursive(Vector2 q1, Vector2 q2, float radius, ObstacleTreeNode node) { if (node == null) { return(true); } Obstacle obstacle1 = node.Obstacle; Obstacle obstacle2 = obstacle1.Next; float q1LeftOfI = RVOMath.LeftOf(obstacle1.Point, obstacle2.Point, q1); float q2LeftOfI = RVOMath.LeftOf(obstacle1.Point, obstacle2.Point, q2); float invLengthI = 1.0f / RVOMath.AbsSq(obstacle2.Point - obstacle1.Point); if (q1LeftOfI >= 0.0f && q2LeftOfI >= 0.0f) { return(QueryVisibilityRecursive(q1, q2, radius, node.Left) && ((RVOMath.Sqr(q1LeftOfI) * invLengthI >= RVOMath.Sqr(radius) && RVOMath.Sqr(q2LeftOfI) * invLengthI >= RVOMath.Sqr(radius)) || QueryVisibilityRecursive(q1, q2, radius, node.Right))); } if (q1LeftOfI <= 0.0f && q2LeftOfI <= 0.0f) { return(QueryVisibilityRecursive(q1, q2, radius, node.Right) && ((RVOMath.Sqr(q1LeftOfI) * invLengthI >= RVOMath.Sqr(radius) && RVOMath.Sqr(q2LeftOfI) * invLengthI >= RVOMath.Sqr(radius)) || QueryVisibilityRecursive(q1, q2, radius, node.Left))); } if (q1LeftOfI >= 0.0f && q2LeftOfI <= 0.0f) { /* One can see through obstacle from left to right. */ return(QueryVisibilityRecursive(q1, q2, radius, node.Left) && QueryVisibilityRecursive(q1, q2, radius, node.Right)); } float point1LeftOfQ = RVOMath.LeftOf(q1, q2, obstacle1.Point); float point2LeftOfQ = RVOMath.LeftOf(q1, q2, obstacle2.Point); float invLengthQ = 1.0f / RVOMath.AbsSq(q2 - q1); return(point1LeftOfQ * point2LeftOfQ >= 0.0f && RVOMath.Sqr(point1LeftOfQ) * invLengthQ > RVOMath.Sqr(radius) && RVOMath.Sqr(point2LeftOfQ) * invLengthQ > RVOMath.Sqr(radius) && QueryVisibilityRecursive(q1, q2, radius, node.Left) && QueryVisibilityRecursive(q1, q2, radius, node.Right)); }
/** * <summary>Recursive method for building an obstacle k-D tree. * </summary> * * <returns>An obstacle k-D tree node.</returns> * * <param name="obstacles">A list of obstacles.</param> */ private static ObstacleTreeNode BuildObstacleTreeRecursive(IList <Obstacle> obstacles) { if (obstacles.Count == 0) { return(null); } ObstacleTreeNode node = new ObstacleTreeNode(); int optimalSplit = 0; int minLeft = obstacles.Count; int minRight = obstacles.Count; for (int i = 0; i < obstacles.Count; ++i) { int leftSize = 0; int rightSize = 0; Obstacle obstacleI1 = obstacles[i]; Obstacle obstacleI2 = obstacleI1.Next; /* Compute optimal split node. */ for (int j = 0; j < obstacles.Count; ++j) { if (i == j) { continue; } Obstacle obstacleJ1 = obstacles[j]; Obstacle obstacleJ2 = obstacleJ1.Next; float j1LeftOfI = RVOMath.LeftOf(obstacleI1.Point, obstacleI2.Point, obstacleJ1.Point); float j2LeftOfI = RVOMath.LeftOf(obstacleI1.Point, obstacleI2.Point, obstacleJ2.Point); if (j1LeftOfI >= -RVOMath.RvoEpsilon && j2LeftOfI >= -RVOMath.RvoEpsilon) { ++leftSize; } else if (j1LeftOfI <= RVOMath.RvoEpsilon && j2LeftOfI <= RVOMath.RvoEpsilon) { ++rightSize; } else { ++leftSize; ++rightSize; } if (new FloatPair(Math.Max(leftSize, rightSize), Math.Min(leftSize, rightSize)) >= new FloatPair(Math.Max(minLeft, minRight), Math.Min(minLeft, minRight))) { break; } } if (new FloatPair(Math.Max(leftSize, rightSize), Math.Min(leftSize, rightSize)) < new FloatPair(Math.Max(minLeft, minRight), Math.Min(minLeft, minRight))) { minLeft = leftSize; minRight = rightSize; optimalSplit = i; } } { /* Build split node. */ IList <Obstacle> leftObstacles = new List <Obstacle>(minLeft); for (int n = 0; n < minLeft; ++n) { leftObstacles.Add(null); } IList <Obstacle> rightObstacles = new List <Obstacle>(minRight); for (int n = 0; n < minRight; ++n) { rightObstacles.Add(null); } int leftCounter = 0; int rightCounter = 0; int i = optimalSplit; Obstacle obstacleI1 = obstacles[i]; Obstacle obstacleI2 = obstacleI1.Next; for (int j = 0; j < obstacles.Count; ++j) { if (i == j) { continue; } Obstacle obstacleJ1 = obstacles[j]; Obstacle obstacleJ2 = obstacleJ1.Next; float j1LeftOfI = RVOMath.LeftOf(obstacleI1.Point, obstacleI2.Point, obstacleJ1.Point); float j2LeftOfI = RVOMath.LeftOf(obstacleI1.Point, obstacleI2.Point, obstacleJ2.Point); if (j1LeftOfI >= -RVOMath.RvoEpsilon && j2LeftOfI >= -RVOMath.RvoEpsilon) { leftObstacles[leftCounter++] = obstacles[j]; } else if (j1LeftOfI <= RVOMath.RvoEpsilon && j2LeftOfI <= RVOMath.RvoEpsilon) { rightObstacles[rightCounter++] = obstacles[j]; } else { /* Split obstacle j. */ float t = RVOMath.Det(obstacleI2.Point - obstacleI1.Point, obstacleJ1.Point - obstacleI1.Point) / RVOMath.Det(obstacleI2.Point - obstacleI1.Point, obstacleJ1.Point - obstacleJ2.Point); Vector2 splitPoint = obstacleJ1.Point + t * (obstacleJ2.Point - obstacleJ1.Point); Obstacle newObstacle = new Obstacle(); newObstacle.Point = splitPoint; newObstacle.Previous = obstacleJ1; newObstacle.Next = obstacleJ2; newObstacle.Convex = true; newObstacle.Direction = obstacleJ1.Direction; newObstacle.Id = Simulator.Instance.Obstacles.Count; Simulator.Instance.Obstacles.Add(newObstacle); obstacleJ1.Next = newObstacle; obstacleJ2.Previous = newObstacle; if (j1LeftOfI > 0.0f) { leftObstacles[leftCounter++] = obstacleJ1; rightObstacles[rightCounter++] = newObstacle; } else { rightObstacles[rightCounter++] = obstacleJ1; leftObstacles[leftCounter++] = newObstacle; } } } node.Obstacle = obstacleI1; node.Left = BuildObstacleTreeRecursive(leftObstacles); node.Right = BuildObstacleTreeRecursive(rightObstacles); return(node); } }