예제 #1
0
파일: Simplex.cs 프로젝트: quant1729/qlnet
        public override EndCriteria.Type minimize(Problem P, EndCriteria endCriteria)
        {
            // set up of the problem
            //double ftol = endCriteria.functionEpsilon();    // end criteria on f(x) (see Numerical Recipes in C++, p.410)
            double xtol = endCriteria.rootEpsilon(); // end criteria on x (see GSL v. 1.9, http://www.gnu.org/software/gsl/)
            int    maxStationaryStateIterations_ = endCriteria.maxStationaryStateIterations();

            EndCriteria.Type ecType = EndCriteria.Type.None;
            P.reset();
            Vector x_ = P.currentValue();
            int    iterationNumber_ = 0;

            // Initialize vertices of the simplex
            bool end = false;
            int  n   = x_.Count;

            vertices_ = new InitializedList <Vector>(n + 1, x_);
            for (int i = 0; i < n; i++)
            {
                Vector direction = new Vector(n, 0.0);
                Vector vertice   = vertices_[i + 1];
                direction[i] = 1.0;
                P.constraint().update(ref vertice, direction, lambda_);
                vertices_[i + 1] = vertice;
            }
            // Initialize function values at the vertices of the simplex
            values_ = new Vector(n + 1, 0.0);
            for (int i = 0; i <= n; i++)
            {
                values_[i] = P.value(vertices_[i]);
            }
            // Loop looking for minimum
            do
            {
                sum_ = new Vector(n, 0.0);
                for (int i = 0; i <= n; i++)
                {
                    sum_ += vertices_[i];
                }
                // Determine the best (iLowest), worst (iHighest)
                // and 2nd worst (iNextHighest) vertices
                int iLowest = 0;
                int iHighest;
                int iNextHighest;
                if (values_[0] < values_[1])
                {
                    iHighest     = 1;
                    iNextHighest = 0;
                }
                else
                {
                    iHighest     = 0;
                    iNextHighest = 1;
                }
                for (int i = 1; i <= n; i++)
                {
                    if (values_[i] > values_[iHighest])
                    {
                        iNextHighest = iHighest;
                        iHighest     = i;
                    }
                    else
                    {
                        if ((values_[i] > values_[iNextHighest]) && i != iHighest)
                        {
                            iNextHighest = i;
                        }
                    }
                    if (values_[i] < values_[iLowest])
                    {
                        iLowest = i;
                    }
                }
                // Now compute accuracy, update iteration number and check end criteria
                //// Numerical Recipes exit strategy on fx (see NR in C++, p.410)
                //double low = values_[iLowest];
                //double high = values_[iHighest];
                //double rtol = 2.0*std::fabs(high - low)/
                //    (std::fabs(high) + std::fabs(low) + QL_EPSILON);
                //++iterationNumber_;
                //if (rtol < ftol ||
                //    endCriteria.checkMaxIterations(iterationNumber_, ecType)) {
                // GSL exit strategy on x (see GSL v. 1.9, http://www.gnu.org/software/gsl
                double simplexSize = Utils.computeSimplexSize(vertices_);
                ++iterationNumber_;
                if (simplexSize < xtol || endCriteria.checkMaxIterations(iterationNumber_, ref ecType))
                {
                    endCriteria.checkStationaryPoint(0.0, 0.0, ref maxStationaryStateIterations_, ref ecType);
                    endCriteria.checkMaxIterations(iterationNumber_, ref ecType);
                    x_ = vertices_[iLowest];
                    double low = values_[iLowest];
                    P.setFunctionValue(low);
                    P.setCurrentValue(x_);
                    return(ecType);
                }
                // If end criteria is not met, continue
                double factor = -1.0;
                double vTry   = extrapolate(ref P, iHighest, ref factor);
                if ((vTry <= values_[iLowest]) && (factor == -1.0))
                {
                    factor = 2.0;
                    extrapolate(ref P, iHighest, ref factor);
                }
                else if (Math.Abs(factor) > Const.QL_EPSILON)
                {
                    if (vTry >= values_[iNextHighest])
                    {
                        double vSave = values_[iHighest];
                        factor = 0.5;
                        vTry   = extrapolate(ref P, iHighest, ref factor);
                        if (vTry >= vSave && Math.Abs(factor) > Const.QL_EPSILON)
                        {
                            for (int i = 0; i <= n; i++)
                            {
                                if (i != iLowest)
                                {
#if QL_ARRAY_EXPRESSIONS
                                    vertices_[i] = 0.5 * (vertices_[i] + vertices_[iLowest]);
#else
                                    vertices_[i] += vertices_[iLowest];
                                    vertices_[i] *= 0.5;
#endif
                                    values_[i] = P.value(vertices_[i]);
                                }
                            }
                        }
                    }
                }
                // If can't extrapolate given the constraints, exit
                if (Math.Abs(factor) <= Const.QL_EPSILON)
                {
                    x_ = vertices_[iLowest];
                    double low = values_[iLowest];
                    P.setFunctionValue(low);
                    P.setCurrentValue(x_);
                    return(EndCriteria.Type.StationaryFunctionValue);
                }
            } while (end == false);
            throw new Exception("optimization failed: unexpected behaviour");
        }
예제 #2
0
파일: Simplex.cs 프로젝트: vdt/QLNet
        public override EndCriteria.Type minimize(Problem P, EndCriteria endCriteria)
        {
            // set up of the problem
            //double ftol = endCriteria.functionEpsilon();    // end criteria on f(x) (see Numerical Recipes in C++, p.410)
            double xtol = endCriteria.rootEpsilon(); // end criteria on x (see GSL v. 1.9, http://www.gnu.org/software/gsl/)
            int maxStationaryStateIterations_ = endCriteria.maxStationaryStateIterations();
            EndCriteria.Type ecType = EndCriteria.Type.None;
            P.reset();
            Vector x_ = P.currentValue();
            int iterationNumber_ = 0;

            // Initialize vertices of the simplex
            bool end = false;
            int n = x_.Count;
            vertices_ = new InitializedList<Vector>(n + 1, x_);
            for (int i = 0; i < n; i++)
            {
                Vector direction = new Vector(n, 0.0);
                direction[i] = 1.0;
                P.constraint().update(vertices_[i + 1], direction, lambda_);
            }
            // Initialize function values at the vertices of the simplex
            values_ = new Vector(n + 1, 0.0);
            for (int i = 0; i <= n; i++)
                values_[i] = P.value(vertices_[i]);
            // Loop looking for minimum
            do
            {
                sum_ = new Vector(n, 0.0);
                for (int i = 0; i <= n; i++)
                    sum_ += vertices_[i];
                // Determine the best (iLowest), worst (iHighest)
                // and 2nd worst (iNextHighest) vertices
                int iLowest = 0;
                int iHighest;
                int iNextHighest;
                if (values_[0] < values_[1])
                {
                    iHighest = 1;
                    iNextHighest = 0;
                }
                else
                {
                    iHighest = 0;
                    iNextHighest = 1;
                }
                for (int i = 1; i <= n; i++)
                {
                    if (values_[i] > values_[iHighest])
                    {
                        iNextHighest = iHighest;
                        iHighest = i;
                    }
                    else
                    {
                        if ((values_[i] > values_[iNextHighest]) && i != iHighest)
                            iNextHighest = i;
                    }
                    if (values_[i] < values_[iLowest])
                        iLowest = i;
                }
                // Now compute accuracy, update iteration number and check end criteria
                //// Numerical Recipes exit strategy on fx (see NR in C++, p.410)
                //double low = values_[iLowest];
                //double high = values_[iHighest];
                //double rtol = 2.0*std::fabs(high - low)/
                //    (std::fabs(high) + std::fabs(low) + QL_EPSILON);
                //++iterationNumber_;
                //if (rtol < ftol ||
                //    endCriteria.checkMaxIterations(iterationNumber_, ecType)) {
                // GSL exit strategy on x (see GSL v. 1.9, http://www.gnu.org/software/gsl
                double simplexSize = Utils.computeSimplexSize(vertices_);
                ++iterationNumber_;
                if (simplexSize < xtol || endCriteria.checkMaxIterations(iterationNumber_, ref ecType))
                {
                    endCriteria.checkStationaryPoint(0.0, 0.0, ref maxStationaryStateIterations_, ref ecType);
                    endCriteria.checkMaxIterations(iterationNumber_, ref ecType);
                    x_ = vertices_[iLowest];
                    double low = values_[iLowest];
                    P.setFunctionValue(low);
                    P.setCurrentValue(x_);
                    return ecType;
                }
                // If end criteria is not met, continue
                double factor = -1.0;
                double vTry = extrapolate(ref P, iHighest, ref factor);
                if ((vTry <= values_[iLowest]) && (factor == -1.0))
                {
                    factor = 2.0;
                    extrapolate(ref P, iHighest, ref factor);
                }
                else if (Math.Abs(factor) > Const.QL_Epsilon)
                {
                    if (vTry >= values_[iNextHighest])
                    {
                        double vSave = values_[iHighest];
                        factor = 0.5;
                        vTry = extrapolate(ref P, iHighest, ref factor);
                        if (vTry >= vSave && Math.Abs(factor) > Const.QL_Epsilon)
                        {
                            for (int i = 0; i <= n; i++)
                            {
                                if (i != iLowest)
                                {
            #if QL_ARRAY_EXPRESSIONS
                                    vertices_[i] = 0.5 * (vertices_[i] + vertices_[iLowest]);
            #else
                                    vertices_[i] += vertices_[iLowest];
                                    vertices_[i] *= 0.5;
            #endif
                                    values_[i] = P.value(vertices_[i]);
                                }
                            }
                        }
                    }
                }
                // If can't extrapolate given the constraints, exit
                if (Math.Abs(factor) <= Const.QL_Epsilon)
                {
                    x_ = vertices_[iLowest];
                    double low = values_[iLowest];
                    P.setFunctionValue(low);
                    P.setCurrentValue(x_);
                    return EndCriteria.Type.StationaryFunctionValue;
                }
            } while (end == false);
            throw new ApplicationException("optimization failed: unexpected behaviour");
        }
예제 #3
0
        //! solve the optimization problem P
        public override EndCriteria.Type minimize(Problem P, EndCriteria endCriteria)
        {
            // Initializations
            double ftol = endCriteria.functionEpsilon();
            int    maxStationaryStateIterations_ = endCriteria.maxStationaryStateIterations();

            EndCriteria.Type ecType = EndCriteria.Type.None;    // reset end criteria
            P.reset();                                          // reset problem
            Vector x_ = P.currentValue();                       // store the starting point
            int    iterationNumber_ = 0;                        // stationaryStateIterationNumber_=0

            lineSearch_.searchDirection = new Vector(x_.Count); // dimension line search
            bool done = false;

            // function and squared norm of gradient values;
            double fnew;
            double fold;
            double gold2;
            double c;
            double fdiff;
            double normdiff;
            // classical initial value for line-search step
            double t = 1.0;
            // Set gradient g at the size of the optimization problem search direction
            int    sz     = lineSearch_.searchDirection.Count;
            Vector g      = new Vector(sz);
            Vector d      = new Vector(sz);
            Vector sddiff = new Vector(sz);

            // Initialize cost function, gradient g and search direction
            P.setFunctionValue(P.valueAndGradient(g, x_));
            P.setGradientNormValue(Vector.DotProduct(g, g));
            lineSearch_.searchDirection = g * -1.0;
            // Loop over iterations
            do
            {
                // Linesearch
                t = lineSearch_.value(P, ref ecType, endCriteria, t);
                // don't throw: it can fail just because maxIterations exceeded
                //QL_REQUIRE(lineSearch_->succeed(), "line-search failed!");
                if (lineSearch_.succeed())
                {
                    // Updates
                    d = lineSearch_.searchDirection;
                    // New point
                    x_ = lineSearch_.lastX();
                    // New function value
                    fold = P.functionValue();
                    P.setFunctionValue(lineSearch_.lastFunctionValue());
                    // New gradient and search direction vectors
                    g = lineSearch_.lastGradient();
                    // orthogonalization coef
                    gold2 = P.gradientNormValue();
                    P.setGradientNormValue(lineSearch_.lastGradientNorm2());
                    c = P.gradientNormValue() / gold2;
                    // conjugate gradient search direction
                    sddiff   = ((g * -1.0) + c * d) - lineSearch_.searchDirection;
                    normdiff = Math.Sqrt(Vector.DotProduct(sddiff, sddiff));
                    lineSearch_.searchDirection = (g * -1.0) + c * d;
                    // Now compute accuracy and check end criteria
                    // Numerical Recipes exit strategy on fx (see NR in C++, p.423)
                    fnew  = P.functionValue();
                    fdiff = 2.0 * Math.Abs(fnew - fold) / (Math.Abs(fnew) + Math.Abs(fold) + Double.Epsilon);
                    if (fdiff < ftol || endCriteria.checkMaxIterations(iterationNumber_, ref ecType))
                    {
                        endCriteria.checkStationaryFunctionValue(0.0, 0.0, ref maxStationaryStateIterations_, ref ecType);
                        endCriteria.checkMaxIterations(iterationNumber_, ref ecType);
                        return(ecType);
                    }
                    //done = endCriteria(iterationNumber_,
                    //                   stationaryStateIterationNumber_,
                    //                   true,  //FIXME: it should be in the problem
                    //                   fold,
                    //                   std::sqrt(gold2),
                    //                   P.functionValue(),
                    //                   std::sqrt(P.gradientNormValue()),
                    //                   ecType);
                    P.setCurrentValue(x_);                  // update problem current value
                    ++iterationNumber_;                     // Increase iteration number
                }
                else
                {
                    done = true;
                }
            } while (!done);
            P.setCurrentValue(x_);
            return(ecType);
        }
예제 #4
0
        //! solve the optimization problem P
        public override EndCriteria.Type minimize(Problem P, EndCriteria endCriteria)
        {
            // Initializations
            double ftol = endCriteria.functionEpsilon();
            int maxStationaryStateIterations_ = endCriteria.maxStationaryStateIterations();
            EndCriteria.Type ecType = EndCriteria.Type.None; // reset end criteria
            P.reset(); // reset problem
            Vector x_ = P.currentValue(); // store the starting point
            int iterationNumber_ =0; // stationaryStateIterationNumber_=0
            lineSearch_.searchDirection = new Vector(x_.Count); // dimension line search
            bool done = false;

            // function and squared norm of gradient values;
            double fnew;
            double fold;
            double gold2;
            double c;
            double fdiff;
            double normdiff;
            // classical initial value for line-search step
            double t = 1.0;
            // Set gradient g at the size of the optimization problem search direction
            int sz = lineSearch_.searchDirection.Count;
            Vector g = new Vector(sz);
            Vector d = new Vector(sz);
            Vector sddiff = new Vector(sz);
            // Initialize cost function, gradient g and search direction
            P.setFunctionValue(P.valueAndGradient(g, x_));
            P.setGradientNormValue(Vector.DotProduct(g, g));
            lineSearch_.searchDirection = g * -1.0;
            // Loop over iterations
            do
            {
                // Linesearch
                t = lineSearch_.value(P, ref ecType, endCriteria, t);
                // don't throw: it can fail just because maxIterations exceeded
                //QL_REQUIRE(lineSearch_->succeed(), "line-search failed!");
                if (lineSearch_.succeed())
                {
                    // Updates
                    d = lineSearch_.searchDirection;
                    // New point
                    x_ = lineSearch_.lastX();
                    // New function value
                    fold = P.functionValue();
                    P.setFunctionValue(lineSearch_.lastFunctionValue());
                    // New gradient and search direction vectors
                    g = lineSearch_.lastGradient();
                    // orthogonalization coef
                    gold2 = P.gradientNormValue();
                    P.setGradientNormValue(lineSearch_.lastGradientNorm2());
                    c = P.gradientNormValue() / gold2;
                    // conjugate gradient search direction
                    sddiff = ((g*-1.0) + c * d) - lineSearch_.searchDirection;
                    normdiff = Math.Sqrt(Vector.DotProduct(sddiff, sddiff));
                    lineSearch_.searchDirection = (g*-1.0) + c * d;
                    // Now compute accuracy and check end criteria
                    // Numerical Recipes exit strategy on fx (see NR in C++, p.423)
                    fnew = P.functionValue();
                    fdiff = 2.0 *Math.Abs(fnew-fold) / (Math.Abs(fnew) + Math.Abs(fold) + Double.Epsilon);
                    if (fdiff < ftol || endCriteria.checkMaxIterations(iterationNumber_, ref ecType))
                    {
                        endCriteria.checkStationaryFunctionValue(0.0, 0.0, ref maxStationaryStateIterations_, ref ecType);
                        endCriteria.checkMaxIterations(iterationNumber_, ref ecType);
                        return ecType;
                    }
                    //done = endCriteria(iterationNumber_,
                    //                   stationaryStateIterationNumber_,
                    //                   true,  //FIXME: it should be in the problem
                    //                   fold,
                    //                   std::sqrt(gold2),
                    //                   P.functionValue(),
                    //                   std::sqrt(P.gradientNormValue()),
                    //                   ecType);
                    P.setCurrentValue(x_); // update problem current value
                    ++iterationNumber_; // Increase iteration number
                    }
                else
                {
                    done =true;
                }
            } while (!done);
            P.setCurrentValue(x_);
            return ecType;
        }
예제 #5
0
        public override EndCriteria.Type minimize(Problem P, EndCriteria endCriteria)
        {
            // Initializations
            double ftol = endCriteria.functionEpsilon();
            int    maxStationaryStateIterations_ = endCriteria.maxStationaryStateIterations();

            EndCriteria.Type ecType = EndCriteria.Type.None; // reset end criteria
            P.reset();                                       // reset problem
            Vector x_ = P.currentValue();                    // store the starting point
            int    iterationNumber_ = 0;

            // dimension line search
            lineSearch_.searchDirection = new Vector(x_.size());
            bool done = false;

            // function and squared norm of gradient values
            double fnew, fold, gold2;
            double fdiff;
            // classical initial value for line-search step
            double t = 1.0;
            // Set gradient g at the size of the optimization problem
            // search direction
            int    sz = lineSearch_.searchDirection.size();
            Vector prevGradient = new Vector(sz), d = new Vector(sz), sddiff = new Vector(sz), direction = new Vector(sz);

            // Initialize cost function, gradient prevGradient and search direction
            P.setFunctionValue(P.valueAndGradient(prevGradient, x_));
            P.setGradientNormValue(Vector.DotProduct(prevGradient, prevGradient));
            lineSearch_.searchDirection = prevGradient * -1;

            bool first_time = true;

            // Loop over iterations
            do
            {
                // Linesearch
                if (!first_time)
                {
                    prevGradient = lineSearch_.lastGradient();
                }
                t = (lineSearch_.value(P, ref ecType, endCriteria, t));
                // don't throw: it can fail just because maxIterations exceeded
                if (lineSearch_.succeed())
                {
                    // Updates

                    // New point
                    x_ = lineSearch_.lastX();
                    // New function value
                    fold = P.functionValue();
                    P.setFunctionValue(lineSearch_.lastFunctionValue());
                    // New gradient and search direction vectors

                    // orthogonalization coef
                    gold2 = P.gradientNormValue();
                    P.setGradientNormValue(lineSearch_.lastGradientNorm2());

                    // conjugate gradient search direction
                    direction = getUpdatedDirection(P, gold2, prevGradient);

                    sddiff = direction - lineSearch_.searchDirection;
                    lineSearch_.searchDirection = direction;
                    // Now compute accuracy and check end criteria
                    // Numerical Recipes exit strategy on fx (see NR in C++, p.423)
                    fnew  = P.functionValue();
                    fdiff = 2.0 * Math.Abs(fnew - fold) /
                            (Math.Abs(fnew) + Math.Abs(fold) + Const.QL_EPSILON);
                    if (fdiff < ftol ||
                        endCriteria.checkMaxIterations(iterationNumber_, ref ecType))
                    {
                        endCriteria.checkStationaryFunctionValue(0.0, 0.0, ref maxStationaryStateIterations_, ref ecType);
                        endCriteria.checkMaxIterations(iterationNumber_, ref ecType);
                        return(ecType);
                    }
                    P.setCurrentValue(x_); // update problem current value
                    ++iterationNumber_;    // Increase iteration number
                    first_time = false;
                }
                else
                {
                    done = true;
                }
            }while (!done);
            P.setCurrentValue(x_);
            return(ecType);
        }