public override void calculate() { Utils.QL_REQUIRE(process_.x0() > 0.0, () => "negative or null underlying given"); StrikedTypePayoff payoff = arguments_.payoff as StrikedTypePayoff; Utils.QL_REQUIRE(payoff != null, () => "non-striked payoff given"); Exercise exercise = arguments_.exercise; double t = process_.riskFreeRate().link.dayCounter().yearFraction(process_.riskFreeRate().link.referenceDate(), exercise.lastDate()); double a = model_.link.parameters()[0]; double sigma = model_.link.parameters()[1]; double eta = process_.blackVolatility().link.blackVol(exercise.lastDate(), payoff.strike()); double varianceOffset; if (a * t > Math.Pow(Const.QL_EPSILON, 0.25)) { double v = sigma * sigma / (a * a) * (t + 2 / a * Math.Exp(-a * t) - 1 / (2 * a) * Math.Exp(-2 * a * t) - 3 / (2 * a)); double mu = 2 * rho_ * sigma * eta / a * (t - 1 / a * (1 - Math.Exp(-a * t))); varianceOffset = v + mu; } else { // low-a algebraic limit double v = sigma * sigma * t * t * t * (1 / 3.0 - 0.25 * a * t + 7 / 60.0 * a * a * t * t); double mu = rho_ * sigma * eta * t * t * (1 - a * t / 3.0 + a * a * t * t / 12.0); varianceOffset = v + mu; } Handle <BlackVolTermStructure> volTS = new Handle <BlackVolTermStructure>( new ShiftedBlackVolTermStructure(varianceOffset, process_.blackVolatility())); GeneralizedBlackScholesProcess adjProcess = new GeneralizedBlackScholesProcess(process_.stateVariable(), process_.dividendYield(), process_.riskFreeRate(), volTS); AnalyticEuropeanEngine bsmEngine = new AnalyticEuropeanEngine(adjProcess); VanillaOption option = new VanillaOption(payoff, exercise); option.setupArguments(bsmEngine.getArguments()); bsmEngine.calculate(); results_ = bsmEngine.getResults() as OneAssetOption.Results; }
/*! \warning currently, this method returns the Black-Scholes * implied volatility using analytic formulas for * European options and a finite-difference method * for American and Bermudan options. It will give * unconsistent results if the pricing was performed * with any other methods (such as jump-diffusion * models.) * * \warning options with a gamma that changes sign (e.g., * binary options) have values that are <b>not</b> * monotonic in the volatility. In these cases, the * calculation can fail and the result (if any) is * almost meaningless. Another possible source of * failure is to have a target value that is not * attainable with any volatility, e.g., a target * value lower than the intrinsic value in the case * of American options. */ public double impliedVolatility(double targetValue, GeneralizedBlackScholesProcess process, double accuracy = 1.0e-4, int maxEvaluations = 100, double minVol = 1.0e-7, double maxVol = 4.0) { Utils.QL_REQUIRE(!isExpired(), () => "option expired"); SimpleQuote volQuote = new SimpleQuote(); GeneralizedBlackScholesProcess newProcess = ImpliedVolatilityHelper.clone(process, volQuote); // engines are built-in for the time being IPricingEngine engine; switch (exercise_.type()) { case Exercise.Type.European: engine = new AnalyticEuropeanEngine(newProcess); break; case Exercise.Type.American: engine = new FDAmericanEngine(newProcess); break; case Exercise.Type.Bermudan: engine = new FDBermudanEngine(newProcess); break; default: throw new ArgumentException("unknown exercise type"); } return(ImpliedVolatilityHelper.calculate(this, engine, volQuote, targetValue, accuracy, maxEvaluations, minVol, maxVol)); }
public override void calculate() { PlainVanillaPayoff payoff = arguments_.payoff as PlainVanillaPayoff; Utils.QL_REQUIRE(payoff != null, () => "non-plain payoff given"); Utils.QL_REQUIRE(payoff.strike() > 0.0, () => "strike must be positive"); double K = payoff.strike(); double S = process_.x0(); Utils.QL_REQUIRE(S >= 0.0, () => "negative or null underlying given"); Utils.QL_REQUIRE(!triggered(S), () => "barrier touched"); DoubleBarrier.Type barrierType = arguments_.barrierType; Utils.QL_REQUIRE(barrierType == DoubleBarrier.Type.KnockOut || barrierType == DoubleBarrier.Type.KnockIn, () => "only KnockIn and KnockOut options supported"); double L = arguments_.barrier_lo.GetValueOrDefault(); double H = arguments_.barrier_hi.GetValueOrDefault(); double K_up = Math.Min(H, K); double K_down = Math.Max(L, K); double T = residualTime(); double rd = riskFreeRate(); double dd = riskFreeDiscount(); double rf = dividendYield(); double df = dividendDiscount(); double vol = volatility(); double mu = rd - rf - vol * vol / 2.0; double sgn = mu > 0 ? 1.0 : (mu < 0 ? -1.0 : 0.0); //rebate double R_L = arguments_.rebate.GetValueOrDefault(); double R_H = arguments_.rebate.GetValueOrDefault(); //european option EuropeanOption europeanOption = new EuropeanOption(payoff, arguments_.exercise); IPricingEngine analyticEuropeanEngine = new AnalyticEuropeanEngine(process_); europeanOption.setPricingEngine(analyticEuropeanEngine); double european = europeanOption.NPV(); double barrierOut = 0; double rebateIn = 0; for (int n = -series_; n < series_; n++) { double d1 = D(S / H * Math.Pow(L / H, 2.0 * n), vol * vol + mu, vol, T); double d2 = d1 - vol * Math.Sqrt(T); double g1 = D(H / S * Math.Pow(L / H, 2.0 * n - 1.0), vol * vol + mu, vol, T); double g2 = g1 - vol * Math.Sqrt(T); double h1 = D(S / H * Math.Pow(L / H, 2.0 * n - 1.0), vol * vol + mu, vol, T); double h2 = h1 - vol * Math.Sqrt(T); double k1 = D(L / S * Math.Pow(L / H, 2.0 * n - 1.0), vol * vol + mu, vol, T); double k2 = k1 - vol * Math.Sqrt(T); double d1_down = D(S / K_down * Math.Pow(L / H, 2.0 * n), vol * vol + mu, vol, T); double d2_down = d1_down - vol * Math.Sqrt(T); double d1_up = D(S / K_up * Math.Pow(L / H, 2.0 * n), vol * vol + mu, vol, T); double d2_up = d1_up - vol * Math.Sqrt(T); double k1_down = D((H * H) / (K_down * S) * Math.Pow(L / H, 2.0 * n), vol * vol + mu, vol, T); double k2_down = k1_down - vol * Math.Sqrt(T); double k1_up = D((H * H) / (K_up * S) * Math.Pow(L / H, 2.0 * n), vol * vol + mu, vol, T); double k2_up = k1_up - vol * Math.Sqrt(T); if (payoff.optionType() == Option.Type.Call) { barrierOut += Math.Pow(L / H, 2.0 * n * mu / (vol * vol)) * (df * S * Math.Pow(L / H, 2.0 * n) * (f_.value(d1_down) - f_.value(d1)) - dd * K * (f_.value(d2_down) - f_.value(d2)) - df * Math.Pow(L / H, 2.0 * n) * H * H / S * Math.Pow(H / S, 2.0 * mu / (vol * vol)) * (f_.value(k1_down) - f_.value(k1)) + dd * K * Math.Pow(H / S, 2.0 * mu / (vol * vol)) * (f_.value(k2_down) - f_.value(k2))); } else if (payoff.optionType() == Option.Type.Put) { barrierOut += Math.Pow(L / H, 2.0 * n * mu / (vol * vol)) * (dd * K * (f_.value(h2) - f_.value(d2_up)) - df * S * Math.Pow(L / H, 2.0 * n) * (f_.value(h1) - f_.value(d1_up)) - dd * K * Math.Pow(H / S, 2.0 * mu / (vol * vol)) * (f_.value(g2) - f_.value(k2_up)) + df * Math.Pow(L / H, 2.0 * n) * H * H / S * Math.Pow(H / S, 2.0 * mu / (vol * vol)) * (f_.value(g1) - f_.value(k1_up))); } else { Utils.QL_FAIL("option type not recognized"); } double v1 = D(H / S * Math.Pow(H / L, 2.0 * n), -mu, vol, T); double v2 = D(H / S * Math.Pow(H / L, 2.0 * n), mu, vol, T); double v3 = D(S / L * Math.Pow(H / L, 2.0 * n), -mu, vol, T); double v4 = D(S / L * Math.Pow(H / L, 2.0 * n), mu, vol, T); rebateIn += dd * R_H * sgn * (Math.Pow(L / H, 2.0 * n * mu / (vol * vol)) * f_.value(sgn * v1) - Math.Pow(H / S, 2.0 * mu / (vol * vol)) * f_.value(-sgn * v2)) + dd * R_L * sgn * (Math.Pow(L / S, 2.0 * mu / (vol * vol)) * f_.value(-sgn * v3) - Math.Pow(H / L, 2.0 * n * mu / (vol * vol)) * f_.value(sgn * v4)); } //rebate paid at maturity if (barrierType == DoubleBarrier.Type.KnockOut) { results_.value = barrierOut; } else { results_.value = european - barrierOut; } results_.additionalResults["vanilla"] = european; results_.additionalResults["barrierOut"] = barrierOut; results_.additionalResults["barrierIn"] = european - barrierOut; }
public override void calculate() { AmericanExercise ex = arguments_.exercise as AmericanExercise; Utils.QL_REQUIRE(ex != null, () => "non-American exercise given"); Utils.QL_REQUIRE(ex.payoffAtExpiry(), () => "payoff must be at expiry"); Utils.QL_REQUIRE(ex.dates()[0] <= process_.blackVolatility().link.referenceDate(), () => "American option with window exercise not handled yet"); StrikedTypePayoff payoff = arguments_.payoff as StrikedTypePayoff; Utils.QL_REQUIRE(payoff != null, () => "non-striked payoff given"); double spot = process_.stateVariable().link.value(); Utils.QL_REQUIRE(spot > 0.0, () => "negative or null underlying given"); double variance = process_.blackVolatility().link.blackVariance(ex.lastDate(), payoff.strike()); double?barrier = arguments_.barrier; Utils.QL_REQUIRE(barrier > 0.0, () => "positive barrier value required"); Barrier.Type barrierType = arguments_.barrierType; // KO degenerate cases if ((barrierType == Barrier.Type.DownOut && spot <= barrier) || (barrierType == Barrier.Type.UpOut && spot >= barrier)) { // knocked out, no value results_.value = 0; results_.delta = 0; results_.gamma = 0; results_.vega = 0; results_.theta = 0; results_.rho = 0; results_.dividendRho = 0; return; } // KI degenerate cases if ((barrierType == Barrier.Type.DownIn && spot <= barrier) || (barrierType == Barrier.Type.UpIn && spot >= barrier)) { // knocked in - is a digital european Exercise exercise = new EuropeanExercise(arguments_.exercise.lastDate()); IPricingEngine engine = new AnalyticEuropeanEngine(process_); VanillaOption opt = new VanillaOption(payoff, exercise); opt.setPricingEngine(engine); results_.value = opt.NPV(); results_.delta = opt.delta(); results_.gamma = opt.gamma(); results_.vega = opt.vega(); results_.theta = opt.theta(); results_.rho = opt.rho(); results_.dividendRho = opt.dividendRho(); return; } double riskFreeDiscount = process_.riskFreeRate().link.discount(ex.lastDate()); AnalyticBinaryBarrierEngine_helper helper = new AnalyticBinaryBarrierEngine_helper( process_, payoff, ex, arguments_); results_.value = helper.payoffAtExpiry(spot, variance, riskFreeDiscount); }