public void StoreImpulses() { for (int i = 0; i < _count; ++i) { ContactVelocityConstraint vc = VelocityConstraints[i]; Manifold manifold = _contacts[vc.ContactIndex].Manifold; for (int j = 0; j < vc.PointCount; ++j) { ManifoldPoint point = manifold.Points[j]; point.NormalImpulse = vc.Points[j].NormalImpulse; point.TangentImpulse = vc.Points[j].TangentImpulse; manifold.Points[j] = point; } _contacts[vc.ContactIndex].Manifold = manifold; } }
public void WarmStart() { // Warm start. for (int i = 0; i < _count; ++i) { ContactVelocityConstraint vc = VelocityConstraints[i]; int indexA = vc.IndexA; int indexB = vc.IndexB; float mA = vc.InvMassA; float iA = vc.InvIA; float mB = vc.InvMassB; float iB = vc.InvIB; int pointCount = vc.PointCount; Vector2 vA = _velocities[indexA].V; float wA = _velocities[indexA].W; Vector2 vB = _velocities[indexB].V; float wB = _velocities[indexB].W; Vector2 normal = vc.Normal; Vector2 tangent = MathUtils.Cross(normal, 1.0f); for (int j = 0; j < pointCount; ++j) { VelocityConstraintPoint vcp = vc.Points[j]; Vector2 P = vcp.NormalImpulse * normal + vcp.TangentImpulse * tangent; wA -= iA * MathUtils.Cross(vcp.rA, P); vA -= mA * P; wB += iB * MathUtils.Cross(vcp.rB, P); vB += mB * P; } _velocities[indexA].V = vA; _velocities[indexA].W = wA; _velocities[indexB].V = vB; _velocities[indexB].W = wB; } }
public void Reset(TimeStep step, int count, Contact[] contacts, Position[] positions, Velocity[] velocities) { _step = step; _count = count; _positions = positions; _velocities = velocities; _contacts = contacts; // grow the array if (VelocityConstraints == null || VelocityConstraints.Length < count) { VelocityConstraints = new ContactVelocityConstraint[count * 2]; _positionConstraints = new ContactPositionConstraint[count * 2]; for (int i = 0; i < VelocityConstraints.Length; i++) { VelocityConstraints[i] = new ContactVelocityConstraint(); } for (int i = 0; i < _positionConstraints.Length; i++) { _positionConstraints[i] = new ContactPositionConstraint(); } } // Initialize position independent portions of the constraints. for (int i = 0; i < _count; ++i) { Contact contact = contacts[i]; Fixture fixtureA = contact.FixtureA; Fixture fixtureB = contact.FixtureB; Shape shapeA = fixtureA.Shape; Shape shapeB = fixtureB.Shape; float radiusA = shapeA.Radius; float radiusB = shapeB.Radius; Body bodyA = fixtureA.Body; Body bodyB = fixtureB.Body; Manifold manifold = contact.Manifold; int pointCount = manifold.PointCount; System.Diagnostics.Debug.Assert(pointCount > 0); ContactVelocityConstraint vc = VelocityConstraints[i]; vc.Friction = contact.Friction; vc.Restitution = contact.Restitution; vc.TangentSpeed = contact.TangentSpeed; vc.IndexA = bodyA.IslandIndex; vc.IndexB = bodyB.IslandIndex; vc.InvMassA = bodyA._invMass; vc.InvMassB = bodyB._invMass; vc.InvIA = bodyA._invI; vc.InvIB = bodyB._invI; vc.ContactIndex = i; vc.PointCount = pointCount; vc.K.SetZero(); vc.NormalMass.SetZero(); ContactPositionConstraint pc = _positionConstraints[i]; pc.IndexA = bodyA.IslandIndex; pc.IndexB = bodyB.IslandIndex; pc.InvMassA = bodyA._invMass; pc.InvMassB = bodyB._invMass; pc.LocalCenterA = bodyA._sweep.LocalCenter; pc.LocalCenterB = bodyB._sweep.LocalCenter; pc.InvIA = bodyA._invI; pc.InvIB = bodyB._invI; pc.LocalNormal = manifold.LocalNormal; pc.LocalPoint = manifold.LocalPoint; pc.PointCount = pointCount; pc.RadiusA = radiusA; pc.RadiusB = radiusB; pc.Type = manifold.Type; for (int j = 0; j < pointCount; ++j) { ManifoldPoint cp = manifold.Points[j]; VelocityConstraintPoint vcp = vc.Points[j]; if (Settings.EnableWarmstarting) { vcp.NormalImpulse = _step.dtRatio * cp.NormalImpulse; vcp.TangentImpulse = _step.dtRatio * cp.TangentImpulse; } else { vcp.NormalImpulse = 0.0f; vcp.TangentImpulse = 0.0f; } vcp.rA = Vector2.Zero; vcp.rB = Vector2.Zero; vcp.NormalMass = 0.0f; vcp.TangentMass = 0.0f; vcp.VelocityBias = 0.0f; pc.LocalPoints[j] = cp.LocalPoint; } } }
public void SolveVelocityConstraints() { for (int i = 0; i < _count; ++i) { ContactVelocityConstraint vc = VelocityConstraints[i]; int indexA = vc.IndexA; int indexB = vc.IndexB; float mA = vc.InvMassA; float iA = vc.InvIA; float mB = vc.InvMassB; float iB = vc.InvIB; int pointCount = vc.PointCount; Vector2 vA = _velocities[indexA].V; float wA = _velocities[indexA].W; Vector2 vB = _velocities[indexB].V; float wB = _velocities[indexB].W; Vector2 normal = vc.Normal; Vector2 tangent = MathUtils.Cross(normal, 1.0f); float friction = vc.Friction; System.Diagnostics.Debug.Assert(pointCount == 1 || pointCount == 2); // Solve tangent constraints first because non-penetration is more important // than friction. for (int j = 0; j < pointCount; ++j) { VelocityConstraintPoint vcp = vc.Points[j]; // Relative velocity at contact Vector2 dv = vB + MathUtils.Cross(wB, vcp.rB) - vA - MathUtils.Cross(wA, vcp.rA); // Compute tangent force float vt = Vector2.Dot(dv, tangent) - vc.TangentSpeed; float lambda = vcp.TangentMass * (-vt); // b2Clamp the accumulated force float maxFriction = friction * vcp.NormalImpulse; float newImpulse = MathUtils.Clamp(vcp.TangentImpulse + lambda, -maxFriction, maxFriction); lambda = newImpulse - vcp.TangentImpulse; vcp.TangentImpulse = newImpulse; // Apply contact impulse Vector2 P = lambda * tangent; vA -= mA * P; wA -= iA * MathUtils.Cross(vcp.rA, P); vB += mB * P; wB += iB * MathUtils.Cross(vcp.rB, P); } // Solve normal constraints if (pointCount == 1 || Settings.BlockSolve == false) { for (int j = 0; j < pointCount; ++j) { VelocityConstraintPoint vcp = vc.Points[j]; // Relative velocity at contact Vector2 dv = vB + MathUtils.Cross(wB, vcp.rB) - vA - MathUtils.Cross(wA, vcp.rA); // Compute normal impulse float vn = Vector2.Dot(dv, normal); float lambda = -vcp.NormalMass * (vn - vcp.VelocityBias); // b2Clamp the accumulated impulse float newImpulse = Math.Max(vcp.NormalImpulse + lambda, 0.0f); lambda = newImpulse - vcp.NormalImpulse; vcp.NormalImpulse = newImpulse; // Apply contact impulse Vector2 P = lambda * normal; vA -= mA * P; wA -= iA * MathUtils.Cross(vcp.rA, P); vB += mB * P; wB += iB * MathUtils.Cross(vcp.rB, P); } } else { // Block solver developed in collaboration with Dirk Gregorius (back in 01/07 on Box2D_Lite). // Build the mini LCP for this contact patch // // vn = A * x + b, vn >= 0, x >= 0 and vn_i * x_i = 0 with i = 1..2 // // A = J * W * JT and J = ( -n, -r1 x n, n, r2 x n ) // b = vn0 - velocityBias // // The system is solved using the "Total enumeration method" (s. Murty). The complementary constraint vn_i * x_i // implies that we must have in any solution either vn_i = 0 or x_i = 0. So for the 2D contact problem the cases // vn1 = 0 and vn2 = 0, x1 = 0 and x2 = 0, x1 = 0 and vn2 = 0, x2 = 0 and vn1 = 0 need to be tested. The first valid // solution that satisfies the problem is chosen. // // In order to account of the accumulated impulse 'a' (because of the iterative nature of the solver which only requires // that the accumulated impulse is clamped and not the incremental impulse) we change the impulse variable (x_i). // // Substitute: // // x = a + d // // a := old total impulse // x := new total impulse // d := incremental impulse // // For the current iteration we extend the formula for the incremental impulse // to compute the new total impulse: // // vn = A * d + b // = A * (x - a) + b // = A * x + b - A * a // = A * x + b' // b' = b - A * a; VelocityConstraintPoint cp1 = vc.Points[0]; VelocityConstraintPoint cp2 = vc.Points[1]; Vector2 a = new Vector2(cp1.NormalImpulse, cp2.NormalImpulse); System.Diagnostics.Debug.Assert(a.X >= 0.0f && a.Y >= 0.0f); // Relative velocity at contact Vector2 dv1 = vB + MathUtils.Cross(wB, cp1.rB) - vA - MathUtils.Cross(wA, cp1.rA); Vector2 dv2 = vB + MathUtils.Cross(wB, cp2.rB) - vA - MathUtils.Cross(wA, cp2.rA); // Compute normal velocity float vn1 = Vector2.Dot(dv1, normal); float vn2 = Vector2.Dot(dv2, normal); Vector2 b = Vector2.Zero; b.X = vn1 - cp1.VelocityBias; b.Y = vn2 - cp2.VelocityBias; const float k_errorTol = 1e-3f; // Compute b' b -= MathUtils.Mul(ref vc.K, a); for (;;) { // // Case 1: vn = 0 // // 0 = A * x + b' // // Solve for x: // // x = - inv(A) * b' // Vector2 x = -MathUtils.Mul(ref vc.NormalMass, b); if (x.X >= 0.0f && x.Y >= 0.0f) { // Get the incremental impulse Vector2 d = x - a; // Apply incremental impulse Vector2 P1 = d.X * normal; Vector2 P2 = d.Y * normal; vA -= mA * (P1 + P2); wA -= iA * (MathUtils.Cross(cp1.rA, P1) + MathUtils.Cross(cp2.rA, P2)); vB += mB * (P1 + P2); wB += iB * (MathUtils.Cross(cp1.rB, P1) + MathUtils.Cross(cp2.rB, P2)); // Accumulate cp1.NormalImpulse = x.X; cp2.NormalImpulse = x.Y; #if B2_DEBUG_SOLVER // Postconditions dv1 = vB + MathUtils.Cross(wB, cp1.rB) - vA - MathUtils.Cross(wA, cp1.rA); dv2 = vB + MathUtils.Cross(wB, cp2.rB) - vA - MathUtils.Cross(wA, cp2.rA); // Compute normal velocity vn1 = Vector2.Dot(dv1, normal); vn2 = Vector2.Dot(dv2, normal); Debug.Assert(Math.Abs(vn1 - cp1.VelocityBias) < k_errorTol); Debug.Assert(Math.Abs(vn2 - cp2.VelocityBias) < k_errorTol); #endif break; } // // Case 2: vn1 = 0 and x2 = 0 // // 0 = a11 * x1 + a12 * 0 + b1' // vn2 = a21 * x1 + a22 * 0 + b2' // x.X = -cp1.NormalMass * b.X; x.Y = 0.0f; vn1 = 0.0f; vn2 = vc.K.ex.Y * x.X + b.Y; if (x.X >= 0.0f && vn2 >= 0.0f) { // Get the incremental impulse Vector2 d = x - a; // Apply incremental impulse Vector2 P1 = d.X * normal; Vector2 P2 = d.Y * normal; vA -= mA * (P1 + P2); wA -= iA * (MathUtils.Cross(cp1.rA, P1) + MathUtils.Cross(cp2.rA, P2)); vB += mB * (P1 + P2); wB += iB * (MathUtils.Cross(cp1.rB, P1) + MathUtils.Cross(cp2.rB, P2)); // Accumulate cp1.NormalImpulse = x.X; cp2.NormalImpulse = x.Y; #if B2_DEBUG_SOLVER // Postconditions dv1 = vB + MathUtils.Cross(wB, cp1.rB) - vA - MathUtils.Cross(wA, cp1.rA); // Compute normal velocity vn1 = Vector2.Dot(dv1, normal); Debug.Assert(Math.Abs(vn1 - cp1.VelocityBias) < k_errorTol); #endif break; } // // Case 3: vn2 = 0 and x1 = 0 // // vn1 = a11 * 0 + a12 * x2 + b1' // 0 = a21 * 0 + a22 * x2 + b2' // x.X = 0.0f; x.Y = -cp2.NormalMass * b.Y; vn1 = vc.K.ey.X * x.Y + b.X; vn2 = 0.0f; if (x.Y >= 0.0f && vn1 >= 0.0f) { // Resubstitute for the incremental impulse Vector2 d = x - a; // Apply incremental impulse Vector2 P1 = d.X * normal; Vector2 P2 = d.Y * normal; vA -= mA * (P1 + P2); wA -= iA * (MathUtils.Cross(cp1.rA, P1) + MathUtils.Cross(cp2.rA, P2)); vB += mB * (P1 + P2); wB += iB * (MathUtils.Cross(cp1.rB, P1) + MathUtils.Cross(cp2.rB, P2)); // Accumulate cp1.NormalImpulse = x.X; cp2.NormalImpulse = x.Y; #if B2_DEBUG_SOLVER // Postconditions dv2 = vB + MathUtils.Cross(wB, cp2.rB) - vA - MathUtils.Cross(wA, cp2.rA); // Compute normal velocity vn2 = Vector2.Dot(dv2, normal); Debug.Assert(Math.Abs(vn2 - cp2.VelocityBias) < k_errorTol); #endif break; } // // Case 4: x1 = 0 and x2 = 0 // // vn1 = b1 // vn2 = b2; x.X = 0.0f; x.Y = 0.0f; vn1 = b.X; vn2 = b.Y; if (vn1 >= 0.0f && vn2 >= 0.0f) { // Resubstitute for the incremental impulse Vector2 d = x - a; // Apply incremental impulse Vector2 P1 = d.X * normal; Vector2 P2 = d.Y * normal; vA -= mA * (P1 + P2); wA -= iA * (MathUtils.Cross(cp1.rA, P1) + MathUtils.Cross(cp2.rA, P2)); vB += mB * (P1 + P2); wB += iB * (MathUtils.Cross(cp1.rB, P1) + MathUtils.Cross(cp2.rB, P2)); // Accumulate cp1.NormalImpulse = x.X; cp2.NormalImpulse = x.Y; break; } // No solution, give up. This is hit sometimes, but it doesn't seem to matter. break; } } _velocities[indexA].V = vA; _velocities[indexA].W = wA; _velocities[indexB].V = vB; _velocities[indexB].W = wB; } }
/// <summary> /// Initialize position dependent portions of the velocity constraints. /// </summary> public void InitializeVelocityConstraints() { for (int i = 0; i < _count; ++i) { ContactVelocityConstraint vc = VelocityConstraints[i]; ContactPositionConstraint pc = _positionConstraints[i]; float radiusA = pc.RadiusA; float radiusB = pc.RadiusB; Manifold manifold = _contacts[vc.ContactIndex].Manifold; int indexA = vc.IndexA; int indexB = vc.IndexB; float mA = vc.InvMassA; float mB = vc.InvMassB; float iA = vc.InvIA; float iB = vc.InvIB; Vector2 localCenterA = pc.LocalCenterA; Vector2 localCenterB = pc.LocalCenterB; Vector2 cA = _positions[indexA].C; float aA = _positions[indexA].A; Vector2 vA = _velocities[indexA].V; float wA = _velocities[indexA].W; Vector2 cB = _positions[indexB].C; float aB = _positions[indexB].A; Vector2 vB = _velocities[indexB].V; float wB = _velocities[indexB].W; System.Diagnostics.Debug.Assert(manifold.PointCount > 0); Transform xfA = new Transform(); Transform xfB = new Transform(); xfA.q.Set(aA); xfB.q.Set(aB); xfA.p = cA - MathUtils.Mul(xfA.q, localCenterA); xfB.p = cB - MathUtils.Mul(xfB.q, localCenterB); WorldManifold.Initialize(ref manifold, ref xfA, radiusA, ref xfB, radiusB, out Vector2 normal, out FixedArray2 <Vector2> points, out _); vc.Normal = normal; int pointCount = vc.PointCount; for (int j = 0; j < pointCount; ++j) { VelocityConstraintPoint vcp = vc.Points[j]; vcp.rA = points[j] - cA; vcp.rB = points[j] - cB; float rnA = MathUtils.Cross(vcp.rA, vc.Normal); float rnB = MathUtils.Cross(vcp.rB, vc.Normal); float kNormal = mA + mB + iA * rnA * rnA + iB * rnB * rnB; vcp.NormalMass = kNormal > 0.0f ? 1.0f / kNormal : 0.0f; Vector2 tangent = MathUtils.Cross(vc.Normal, 1.0f); float rtA = MathUtils.Cross(vcp.rA, tangent); float rtB = MathUtils.Cross(vcp.rB, tangent); float kTangent = mA + mB + iA * rtA * rtA + iB * rtB * rtB; vcp.TangentMass = kTangent > 0.0f ? 1.0f / kTangent : 0.0f; // Setup a velocity bias for restitution. vcp.VelocityBias = 0.0f; float vRel = Vector2.Dot(vc.Normal, vB + MathUtils.Cross(wB, vcp.rB) - vA - MathUtils.Cross(wA, vcp.rA)); if (vRel < -Settings.VelocityThreshold) { vcp.VelocityBias = -vc.Restitution * vRel; } } // If we have two points, then prepare the block solver. if (vc.PointCount == 2 && Settings.BlockSolve) { VelocityConstraintPoint vcp1 = vc.Points[0]; VelocityConstraintPoint vcp2 = vc.Points[1]; float rn1A = MathUtils.Cross(vcp1.rA, vc.Normal); float rn1B = MathUtils.Cross(vcp1.rB, vc.Normal); float rn2A = MathUtils.Cross(vcp2.rA, vc.Normal); float rn2B = MathUtils.Cross(vcp2.rB, vc.Normal); float k11 = mA + mB + iA * rn1A * rn1A + iB * rn1B * rn1B; float k22 = mA + mB + iA * rn2A * rn2A + iB * rn2B * rn2B; float k12 = mA + mB + iA * rn1A * rn2A + iB * rn1B * rn2B; // Ensure a reasonable condition number. const float k_maxConditionNumber = 1000.0f; if (k11 * k11 < k_maxConditionNumber * (k11 * k22 - k12 * k12)) { // K is safe to invert. vc.K.ex = new Vector2(k11, k12); vc.K.ey = new Vector2(k12, k22); vc.NormalMass = vc.K.Inverse; } else { // The constraints are redundant, just use one. // TODO_ERIN use deepest? vc.PointCount = 1; } } } }