/// <summary> /// This was designed so that fast moving objects will get interpolated a lot more than slow moving objects /// so fast moving objects shouldn't loose positional acuracy when close to a planet, /// and slow moving objects won't have processor time wasted on them by calulcating too often. /// However this seems to be unstable and looses energy, unsure why. currently set it to just itterate/interpolate every second. /// so currently will be using more time to get through this than neccisary. /// </summary> /// <param name="entity">Entity.</param> /// <param name="deltaSeconds">Delta seconds.</param> public static void NewtonMove(Entity entity, int deltaSeconds) { NewtonMoveDB newtonMoveDB = entity.GetDataBlob <NewtonMoveDB>(); NewtonThrustAbilityDB newtonThrust = entity.GetDataBlob <NewtonThrustAbilityDB>(); PositionDB positionDB = entity.GetDataBlob <PositionDB>(); double mass_Kg = entity.GetDataBlob <MassVolumeDB>().Mass; double parentMass_kg = newtonMoveDB.ParentMass; var manager = entity.Manager; DateTime dateTimeFrom = newtonMoveDB.LastProcessDateTime; DateTime dateTimeNow = manager.ManagerSubpulses.StarSysDateTime; DateTime dateTimeFuture = dateTimeNow + TimeSpan.FromSeconds(deltaSeconds); double deltaT = (dateTimeFuture - dateTimeFrom).TotalSeconds; double secondsToItterate = deltaT; while (secondsToItterate > 0) { //double timeStep = Math.Max(secondsToItterate / speed_kms, 1); //timeStep = Math.Min(timeStep, secondsToItterate); double timeStepInSeconds = 1;//because the above seems unstable and looses energy. double distanceToParent_m = positionDB.GetDistanceTo_m(newtonMoveDB.SOIParent.GetDataBlob <PositionDB>()); distanceToParent_m = Math.Max(distanceToParent_m, 0.1); //don't let the distance be 0 (once collision is in this will likely never happen anyway) double gravForce = GameConstants.Science.GravitationalConstant * (mass_Kg * parentMass_kg / Math.Pow(distanceToParent_m, 2)); Vector3 gravForceVector = gravForce * -Vector3.Normalise(positionDB.RelativePosition_m); Vector3 totalDVFromGrav = (gravForceVector / mass_Kg) * timeStepInSeconds; //double maxAccelFromThrust1 = newtonThrust.ExhaustVelocity * Math.Log(mass_Kg / (mass_Kg - newtonThrust.FuelBurnRate));//per second //double maxAccelFromThrust = newtonThrust.ThrustInNewtons / mass_Kg; //per second Vector3 manuverDV = newtonMoveDB.DeltaVForManuver_m; //how much dv needed to complete the manuver. Vector3 totalDVFromThrust = new Vector3(0, 0, 0); if (manuverDV.Length() > 0) { double dryMass = mass_Kg - newtonThrust.FuelBurnRate * timeStepInSeconds; //how much our ship weighs after a timestep of fuel is used. //how much dv can we get in this timestep. double deltaVThisStep = OrbitMath.TsiolkovskyRocketEquation(mass_Kg, dryMass, newtonThrust.ExhaustVelocity); deltaVThisStep = Math.Min(manuverDV.Length(), deltaVThisStep); //don't use more Dv than what is called for. deltaVThisStep = Math.Min(newtonThrust.DeltaV, deltaVThisStep); //check we've got the deltaV to spend. totalDVFromThrust = Vector3.Normalise(manuverDV) * deltaVThisStep; //remove the deltaV we're expending from the max (TODO: Remove fuel from cargo, change mass of ship) newtonThrust.DeltaV -= deltaVThisStep; //remove the vectorDV from the amount needed to fully complete the manuver. newtonMoveDB.DeltaVForManuver_m -= totalDVFromThrust; } Vector3 totalDV = totalDVFromGrav + totalDVFromThrust; Vector3 newVelocity = totalDV + newtonMoveDB.CurrentVector_ms; newtonMoveDB.CurrentVector_ms = newVelocity; Vector3 deltaPos = (newtonMoveDB.CurrentVector_ms + newVelocity) / 2 * timeStepInSeconds; positionDB.RelativePosition_m += deltaPos; double sOIRadius = OrbitProcessor.GetSOI_m(newtonMoveDB.SOIParent); if (positionDB.RelativePosition_m.Length() >= sOIRadius) { Entity newParent; Vector3 parentRalitiveVector; //if our parent is a regular kepler object (normaly this is the case) if (newtonMoveDB.SOIParent.HasDataBlob <OrbitDB>()) { var orbitDB = newtonMoveDB.SOIParent.GetDataBlob <OrbitDB>(); newParent = orbitDB.Parent; var parentVelocity = OrbitProcessor.InstantaneousOrbitalVelocityVector_m(orbitDB, entity.StarSysDateTime); parentRalitiveVector = newtonMoveDB.CurrentVector_ms + parentVelocity; } else //if (newtonMoveDB.SOIParent.HasDataBlob<NewtonMoveDB>()) { //this will pretty much never happen. newParent = newtonMoveDB.SOIParent.GetDataBlob <NewtonMoveDB>().SOIParent; var parentVelocity = newtonMoveDB.SOIParent.GetDataBlob <NewtonMoveDB>().CurrentVector_ms; parentRalitiveVector = newtonMoveDB.CurrentVector_ms + parentVelocity; } parentMass_kg = newParent.GetDataBlob <MassVolumeDB>().Mass; Vector3 posRalitiveToNewParent = positionDB.AbsolutePosition_m - newParent.GetDataBlob <PositionDB>().AbsolutePosition_m; var dateTime = dateTimeNow + TimeSpan.FromSeconds(deltaSeconds - secondsToItterate); double sgp = GMath.StandardGravitationalParameter(parentMass_kg + mass_Kg); var kE = OrbitMath.KeplerFromPositionAndVelocity(sgp, posRalitiveToNewParent, parentRalitiveVector, dateTime); positionDB.SetParent(newParent); newtonMoveDB.ParentMass = parentMass_kg; newtonMoveDB.SOIParent = newParent; newtonMoveDB.CurrentVector_ms = parentRalitiveVector; } if (newtonMoveDB.DeltaVForManuver_m.Length() <= 0) //if we've completed the manuver. { var dateTime = dateTimeNow + TimeSpan.FromSeconds(deltaSeconds - secondsToItterate); double sgp = GMath.StandardGravitationalParameter(parentMass_kg + mass_Kg); KeplerElements kE = OrbitMath.KeplerFromPositionAndVelocity(sgp, positionDB.RelativePosition_m, newtonMoveDB.CurrentVector_ms, dateTime); var parentEntity = Entity.GetSOIParentEntity(entity, positionDB); if (kE.Eccentricity < 1) //if we're going to end up in a regular orbit around our new parent { var newOrbit = OrbitDB.FromKeplerElements( parentEntity, mass_Kg, kE, dateTime); entity.RemoveDataBlob <NewtonMoveDB>(); entity.SetDataBlob(newOrbit); positionDB.SetParent(parentEntity); var newPos = OrbitProcessor.GetPosition_m(newOrbit, dateTime); positionDB.RelativePosition_m = newPos; } break; } secondsToItterate -= timeStepInSeconds; } newtonMoveDB.LastProcessDateTime = dateTimeFuture; }
private const double Epsilon = 1.0e-15; //TODO: test how low we can go /// <summary> /// Kepler elements from velocity and position. /// Note, to get correct results ensure all Sgp, position, and velocity values are all in the same type (ie meters, km, or AU) /// </summary> /// <returns>a struct of Kepler elements.</returns> /// <param name="standardGravParam">Standard grav parameter.</param> /// <param name="position">Position ralitive to parent</param> /// <param name="velocity">Velocity ralitive to parent</param> public static KeplerElements KeplerFromPositionAndVelocity(double standardGravParam, Vector3 position, Vector3 velocity, DateTime epoch) { KeplerElements ke = new KeplerElements(); Vector3 angularVelocity = Vector3.Cross(position, velocity); Vector3 nodeVector = Vector3.Cross(new Vector3(0, 0, 1), angularVelocity); Vector3 eccentVector = EccentricityVector(standardGravParam, position, velocity); double eccentricity = eccentVector.Length(); double specificOrbitalEnergy = Math.Pow(velocity.Length(), 2) * 0.5 - standardGravParam / position.Length(); double semiMajorAxis; double p; //p is where the ellipse or hypobola crosses a line from the focal point 90 degrees from the sma if (Math.Abs(eccentricity) > 1) //hypobola { semiMajorAxis = -(-standardGravParam / (2 * specificOrbitalEnergy)); //in this case the sma is negitive p = semiMajorAxis * (1 - eccentricity * eccentricity); } else if (Math.Abs(eccentricity) < 1) //ellipse { semiMajorAxis = -standardGravParam / (2 * specificOrbitalEnergy); p = semiMajorAxis * (1 - eccentricity * eccentricity); } else //parabola { p = angularVelocity.Length() * angularVelocity.Length() / standardGravParam; semiMajorAxis = double.MaxValue; } double semiMinorAxis = EllipseMath.SemiMinorAxis(semiMajorAxis, eccentricity); double linierEccentricity = eccentricity * semiMajorAxis; double inclination = Math.Acos(angularVelocity.Z / angularVelocity.Length()); //should be 0 in 2d. or pi if counter clockwise orbit. if (double.IsNaN(inclination)) { inclination = 0; } double longdOfAN = CalculateLongitudeOfAscendingNode(nodeVector); double trueAnomaly = TrueAnomaly(eccentVector, position, velocity); double argOfPeriaps = GetArgumentOfPeriapsis2(position, inclination, longdOfAN, trueAnomaly); var meanMotion = Math.Sqrt(standardGravParam / Math.Pow(semiMajorAxis, 3)); double eccentricAnomoly = GetEccentricAnomalyFromTrueAnomaly(trueAnomaly, eccentricity); var meanAnomaly = GetMeanAnomaly(eccentricity, eccentricAnomoly); ke.SemiMajorAxis = semiMajorAxis; ke.SemiMinorAxis = semiMinorAxis; ke.Eccentricity = eccentricity; ke.Apoapsis = EllipseMath.Apoapsis(eccentricity, semiMajorAxis); ke.Periapsis = EllipseMath.Periapsis(eccentricity, semiMajorAxis); ke.LinierEccentricity = EllipseMath.LinierEccentricity(ke.Apoapsis, semiMajorAxis); ke.LoAN = longdOfAN; ke.AoP = argOfPeriaps; ke.Inclination = inclination; ke.MeanMotion = meanMotion; ke.MeanAnomalyAtEpoch = meanAnomaly; ke.TrueAnomalyAtEpoch = trueAnomaly; ke.Epoch = epoch; //TimeFromPeriapsis(semiMajorAxis, standardGravParam, meanAnomaly); //Epoch(semiMajorAxis, semiMinorAxis, eccentricAnomoly, OrbitalPeriod(standardGravParam, semiMajorAxis)); return(ke); }