public static double Get(Seed seed, double x) { // Find unit grid cell containing point var X = FastFloor(x); // Get relative xyz coordinates of point within that cell x -= X; // Wrap the integer cells at 255 (smaller integer period can be introduced here) X &= 255; // Calculate a set of eight hashed gradient indices var gi0 = p[X]%12; var gi1 = p[X + 1]%12; // The gradients of each corner are now: // g0 = grad3[gi0]; // g1 = grad3[gi1]; // Calculate noise contributions from each of the four corners var n0 = Dot(Grad3[gi0], x); var n1 = Dot(Grad3[gi1], x - 1); // Compute the fade curve value for each of x, y var u = Fade(x); // Interpolate along x the contributions from each of the corners var nx = Lerp(n0, n1, u); return nx; }
public static double Get(Seed seed, double x, double y) { const double zero = 0d; const double one = 1d; const double two = 2d; // Place input coordinates onto grid. var stretchOffset = (x + y)*StretchConstant_2D; var xs = x + stretchOffset; var ys = y + stretchOffset; // Floor to get grid coordinates of rhombus (stretched square) super-cell origin. var xsFloor = Math.FastFloor(xs); var ysFloor = Math.FastFloor(ys); // Skew out to get actual coordinates of rhombus origin. We'll need these later. var squishOffset = (xsFloor + ysFloor)*SquishConstant_2D; var xFloor = xsFloor + squishOffset; var yFloor = ysFloor + squishOffset; // Compute grid coordinates relative to rhombus origin. var xsFrac = xs - xsFloor; var ysFrac = ys - ysFloor; // Sum those together to get a value that determines which region we're in. var fracSum = xsFrac + ysFrac; // Positions relative to origin point. var dx0 = x - xFloor; var dy0 = y - yFloor; var value = zero; // Contribution (1,0) var dx1 = dx0 - one - SquishConstant_2D; var dy1 = dy0 - zero - SquishConstant_2D; value += Gradient.Get(seed, xsFloor + 1, ysFloor, dx1, dy1); // Contribution (0,1) var dx2 = dx0 - zero - SquishConstant_2D; var dy2 = dy0 - one - SquishConstant_2D; value += Gradient.Get(seed, xsFloor, ysFloor + 1, dx2, dy2); // Check if we're inside the triangle (2-Simplex) at (1,1) if (fracSum > one) { xsFloor++; ysFloor++; dx0 = dx0 - one - two*SquishConstant_2D; dy0 = dy0 - one - two*SquishConstant_2D; } // Contribution (0,0) or (1,1) value += Gradient.Get(seed, xsFloor, ysFloor, dx0, dy0); return value/NormConstant_2D; }
public ThreadedChunkGenerator(Seed seed) { _in = new Queue<IChunk>(); _out = new Queue<IChunk>(); _seed = seed; _b = new Brownian(3, 0.01, 2, 0.8); var thread = new Thread(Run) { Priority = ThreadPriority.BelowNormal, IsBackground = true }; thread.Start(); }
public double Get(Seed seed, double x, double y, double z, Func<Seed, double, double, double, double> noise) { var frequency = _startFrequency; double amplitude = 1; double result = 0; for (var octave = 0; octave < _octaves; ++octave) { result += noise(seed, x*frequency, y*frequency, z*frequency)*amplitude; amplitude *= _persistence; frequency *= _lacunarity; } return result; }
private double extrapolate(Seed seed, int xsb, int ysb, int zsb, double dx, double dy, double dz) { var index = seed.Get(xsb, ysb, zsb); var a = gradients3D[index] * dx + gradients3D[index + 1] * dy + gradients3D[index + 2] * dz; return a; }
private double extrapolate(Seed seed, int xsb, int ysb, double dx, double dy) { var seedIndex = seed.Get(xsb, ysb) & 0x0E; return gradients2D[seedIndex] * dx + gradients2D[seedIndex + 1] * dy; }
//3D OpenSimplex Noise. public double eval(Seed seed, double x, double y, double z) { //Place input coordinates on simplectic honeycomb. double stretchOffset = (x + y + z) * STRETCH_CONSTANT_3D; double xs = x + stretchOffset; double ys = y + stretchOffset; double zs = z + stretchOffset; //Floor to get simplectic honeycomb coordinates of rhombohedron (stretched cube) super-cell origin. int xsb = fastFloor(xs); int ysb = fastFloor(ys); int zsb = fastFloor(zs); //Skew out to get actual coordinates of rhombohedron origin. We'll need these later. double squishOffset = (xsb + ysb + zsb) * SQUISH_CONSTANT_3D; double xb = xsb + squishOffset; double yb = ysb + squishOffset; double zb = zsb + squishOffset; //Compute simplectic honeycomb coordinates relative to rhombohedral origin. double xins = xs - xsb; double yins = ys - ysb; double zins = zs - zsb; //Sum those together to get a value that determines which region we're in. double inSum = xins + yins + zins; //Positions relative to origin point. double dx0 = x - xb; double dy0 = y - yb; double dz0 = z - zb; //We'll be defining these inside the next block and using them afterwards. double dx_ext0, dy_ext0, dz_ext0; double dx_ext1, dy_ext1, dz_ext1; int xsv_ext0, ysv_ext0, zsv_ext0; int xsv_ext1, ysv_ext1, zsv_ext1; double value = 0; if (inSum <= 1) { //We're inside the tetrahedron (3-Simplex) at (0,0,0) //Determine which two of (0,0,1), (0,1,0), (1,0,0) are closest. byte aPoint = 0x01; double aScore = xins; byte bPoint = 0x02; double bScore = yins; if (aScore >= bScore && zins > bScore) { bScore = zins; bPoint = 0x04; } else if (aScore < bScore && zins > aScore) { aScore = zins; aPoint = 0x04; } //Now we determine the two lattice points not part of the tetrahedron that may contribute. //This depends on the closest two tetrahedral vertices, including (0,0,0) double wins = 1 - inSum; if (wins > aScore || wins > bScore) { //(0,0,0) is one of the closest two tetrahedral vertices. byte c = (bScore > aScore ? bPoint : aPoint); //Our other closest vertex is the closest out of a and b. if ((c & 0x01) == 0) { xsv_ext0 = xsb - 1; xsv_ext1 = xsb; dx_ext0 = dx0 + 1; dx_ext1 = dx0; } else { xsv_ext0 = xsv_ext1 = xsb + 1; dx_ext0 = dx_ext1 = dx0 - 1; } if ((c & 0x02) == 0) { ysv_ext0 = ysv_ext1 = ysb; dy_ext0 = dy_ext1 = dy0; if ((c & 0x01) == 0) { ysv_ext1 -= 1; dy_ext1 += 1; } else { ysv_ext0 -= 1; dy_ext0 += 1; } } else { ysv_ext0 = ysv_ext1 = ysb + 1; dy_ext0 = dy_ext1 = dy0 - 1; } if ((c & 0x04) == 0) { zsv_ext0 = zsb; zsv_ext1 = zsb - 1; dz_ext0 = dz0; dz_ext1 = dz0 + 1; } else { zsv_ext0 = zsv_ext1 = zsb + 1; dz_ext0 = dz_ext1 = dz0 - 1; } } else { //(0,0,0) is not one of the closest two tetrahedral vertices. byte c = (byte)(aPoint | bPoint); //Our two extra vertices are determined by the closest two. if ((c & 0x01) == 0) { xsv_ext0 = xsb; xsv_ext1 = xsb - 1; dx_ext0 = dx0 - 2 * SQUISH_CONSTANT_3D; dx_ext1 = dx0 + 1 - SQUISH_CONSTANT_3D; } else { xsv_ext0 = xsv_ext1 = xsb + 1; dx_ext0 = dx0 - 1 - 2 * SQUISH_CONSTANT_3D; dx_ext1 = dx0 - 1 - SQUISH_CONSTANT_3D; } if ((c & 0x02) == 0) { ysv_ext0 = ysb; ysv_ext1 = ysb - 1; dy_ext0 = dy0 - 2 * SQUISH_CONSTANT_3D; dy_ext1 = dy0 + 1 - SQUISH_CONSTANT_3D; } else { ysv_ext0 = ysv_ext1 = ysb + 1; dy_ext0 = dy0 - 1 - 2 * SQUISH_CONSTANT_3D; dy_ext1 = dy0 - 1 - SQUISH_CONSTANT_3D; } if ((c & 0x04) == 0) { zsv_ext0 = zsb; zsv_ext1 = zsb - 1; dz_ext0 = dz0 - 2 * SQUISH_CONSTANT_3D; dz_ext1 = dz0 + 1 - SQUISH_CONSTANT_3D; } else { zsv_ext0 = zsv_ext1 = zsb + 1; dz_ext0 = dz0 - 1 - 2 * SQUISH_CONSTANT_3D; dz_ext1 = dz0 - 1 - SQUISH_CONSTANT_3D; } } //Contribution (0,0,0) double attn0 = 2 - dx0 * dx0 - dy0 * dy0 - dz0 * dz0; if (attn0 > 0) { attn0 *= attn0; value += attn0 * attn0 * extrapolate(seed, xsb + 0, ysb + 0, zsb + 0, dx0, dy0, dz0); } //Contribution (1,0,0) double dx1 = dx0 - 1 - SQUISH_CONSTANT_3D; double dy1 = dy0 - 0 - SQUISH_CONSTANT_3D; double dz1 = dz0 - 0 - SQUISH_CONSTANT_3D; double attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1; if (attn1 > 0) { attn1 *= attn1; value += attn1 * attn1 * extrapolate(seed, xsb + 1, ysb + 0, zsb + 0, dx1, dy1, dz1); } //Contribution (0,1,0) double dx2 = dx0 - 0 - SQUISH_CONSTANT_3D; double dy2 = dy0 - 1 - SQUISH_CONSTANT_3D; double dz2 = dz1; double attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2; if (attn2 > 0) { attn2 *= attn2; value += attn2 * attn2 * extrapolate(seed, xsb + 0, ysb + 1, zsb + 0, dx2, dy2, dz2); } //Contribution (0,0,1) double dx3 = dx2; double dy3 = dy1; double dz3 = dz0 - 1 - SQUISH_CONSTANT_3D; double attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3; if (attn3 > 0) { attn3 *= attn3; value += attn3 * attn3 * extrapolate(seed, xsb + 0, ysb + 0, zsb + 1, dx3, dy3, dz3); } } else if (inSum >= 2) { //We're inside the tetrahedron (3-Simplex) at (1,1,1) //Determine which two tetrahedral vertices are the closest, out of (1,1,0), (1,0,1), (0,1,1) but not (1,1,1). byte aPoint = 0x06; double aScore = xins; byte bPoint = 0x05; double bScore = yins; if (aScore <= bScore && zins < bScore) { bScore = zins; bPoint = 0x03; } else if (aScore > bScore && zins < aScore) { aScore = zins; aPoint = 0x03; } //Now we determine the two lattice points not part of the tetrahedron that may contribute. //This depends on the closest two tetrahedral vertices, including (1,1,1) double wins = 3 - inSum; if (wins < aScore || wins < bScore) { //(1,1,1) is one of the closest two tetrahedral vertices. byte c = (bScore < aScore ? bPoint : aPoint); //Our other closest vertex is the closest out of a and b. if ((c & 0x01) != 0) { xsv_ext0 = xsb + 2; xsv_ext1 = xsb + 1; dx_ext0 = dx0 - 2 - 3 * SQUISH_CONSTANT_3D; dx_ext1 = dx0 - 1 - 3 * SQUISH_CONSTANT_3D; } else { xsv_ext0 = xsv_ext1 = xsb; dx_ext0 = dx_ext1 = dx0 - 3 * SQUISH_CONSTANT_3D; } if ((c & 0x02) != 0) { ysv_ext0 = ysv_ext1 = ysb + 1; dy_ext0 = dy_ext1 = dy0 - 1 - 3 * SQUISH_CONSTANT_3D; if ((c & 0x01) != 0) { ysv_ext1 += 1; dy_ext1 -= 1; } else { ysv_ext0 += 1; dy_ext0 -= 1; } } else { ysv_ext0 = ysv_ext1 = ysb; dy_ext0 = dy_ext1 = dy0 - 3 * SQUISH_CONSTANT_3D; } if ((c & 0x04) != 0) { zsv_ext0 = zsb + 1; zsv_ext1 = zsb + 2; dz_ext0 = dz0 - 1 - 3 * SQUISH_CONSTANT_3D; dz_ext1 = dz0 - 2 - 3 * SQUISH_CONSTANT_3D; } else { zsv_ext0 = zsv_ext1 = zsb; dz_ext0 = dz_ext1 = dz0 - 3 * SQUISH_CONSTANT_3D; } } else { //(1,1,1) is not one of the closest two tetrahedral vertices. byte c = (byte)(aPoint & bPoint); //Our two extra vertices are determined by the closest two. if ((c & 0x01) != 0) { xsv_ext0 = xsb + 1; xsv_ext1 = xsb + 2; dx_ext0 = dx0 - 1 - SQUISH_CONSTANT_3D; dx_ext1 = dx0 - 2 - 2 * SQUISH_CONSTANT_3D; } else { xsv_ext0 = xsv_ext1 = xsb; dx_ext0 = dx0 - SQUISH_CONSTANT_3D; dx_ext1 = dx0 - 2 * SQUISH_CONSTANT_3D; } if ((c & 0x02) != 0) { ysv_ext0 = ysb + 1; ysv_ext1 = ysb + 2; dy_ext0 = dy0 - 1 - SQUISH_CONSTANT_3D; dy_ext1 = dy0 - 2 - 2 * SQUISH_CONSTANT_3D; } else { ysv_ext0 = ysv_ext1 = ysb; dy_ext0 = dy0 - SQUISH_CONSTANT_3D; dy_ext1 = dy0 - 2 * SQUISH_CONSTANT_3D; } if ((c & 0x04) != 0) { zsv_ext0 = zsb + 1; zsv_ext1 = zsb + 2; dz_ext0 = dz0 - 1 - SQUISH_CONSTANT_3D; dz_ext1 = dz0 - 2 - 2 * SQUISH_CONSTANT_3D; } else { zsv_ext0 = zsv_ext1 = zsb; dz_ext0 = dz0 - SQUISH_CONSTANT_3D; dz_ext1 = dz0 - 2 * SQUISH_CONSTANT_3D; } } //Contribution (1,1,0) double dx3 = dx0 - 1 - 2 * SQUISH_CONSTANT_3D; double dy3 = dy0 - 1 - 2 * SQUISH_CONSTANT_3D; double dz3 = dz0 - 0 - 2 * SQUISH_CONSTANT_3D; double attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3; if (attn3 > 0) { attn3 *= attn3; value += attn3 * attn3 * extrapolate(seed, xsb + 1, ysb + 1, zsb + 0, dx3, dy3, dz3); } //Contribution (1,0,1) double dx2 = dx3; double dy2 = dy0 - 0 - 2 * SQUISH_CONSTANT_3D; double dz2 = dz0 - 1 - 2 * SQUISH_CONSTANT_3D; double attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2; if (attn2 > 0) { attn2 *= attn2; value += attn2 * attn2 * extrapolate(seed, xsb + 1, ysb + 0, zsb + 1, dx2, dy2, dz2); } //Contribution (0,1,1) double dx1 = dx0 - 0 - 2 * SQUISH_CONSTANT_3D; double dy1 = dy3; double dz1 = dz2; double attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1; if (attn1 > 0) { attn1 *= attn1; value += attn1 * attn1 * extrapolate(seed, xsb + 0, ysb + 1, zsb + 1, dx1, dy1, dz1); } //Contribution (1,1,1) dx0 = dx0 - 1 - 3 * SQUISH_CONSTANT_3D; dy0 = dy0 - 1 - 3 * SQUISH_CONSTANT_3D; dz0 = dz0 - 1 - 3 * SQUISH_CONSTANT_3D; double attn0 = 2 - dx0 * dx0 - dy0 * dy0 - dz0 * dz0; if (attn0 > 0) { attn0 *= attn0; value += attn0 * attn0 * extrapolate(seed, xsb + 1, ysb + 1, zsb + 1, dx0, dy0, dz0); } } else { //We're inside the octahedron (Rectified 3-Simplex) in between. double aScore; byte aPoint; bool aIsFurtherSide; double bScore; byte bPoint; bool bIsFurtherSide; //Decide between point (0,0,1) and (1,1,0) as closest double p1 = xins + yins; if (p1 > 1) { aScore = p1 - 1; aPoint = 0x03; aIsFurtherSide = true; } else { aScore = 1 - p1; aPoint = 0x04; aIsFurtherSide = false; } //Decide between point (0,1,0) and (1,0,1) as closest double p2 = xins + zins; if (p2 > 1) { bScore = p2 - 1; bPoint = 0x05; bIsFurtherSide = true; } else { bScore = 1 - p2; bPoint = 0x02; bIsFurtherSide = false; } //The closest out of the two (1,0,0) and (0,1,1) will replace the furthest out of the two decided above, if closer. double p3 = yins + zins; if (p3 > 1) { double score = p3 - 1; if (aScore <= bScore && aScore < score) { aScore = score; aPoint = 0x06; aIsFurtherSide = true; } else if (aScore > bScore && bScore < score) { bScore = score; bPoint = 0x06; bIsFurtherSide = true; } } else { double score = 1 - p3; if (aScore <= bScore && aScore < score) { aScore = score; aPoint = 0x01; aIsFurtherSide = false; } else if (aScore > bScore && bScore < score) { bScore = score; bPoint = 0x01; bIsFurtherSide = false; } } //Where each of the two closest points are determines how the extra two vertices are calculated. if (aIsFurtherSide == bIsFurtherSide) { if (aIsFurtherSide) { //Both closest points on (1,1,1) side //One of the two extra points is (1,1,1) dx_ext0 = dx0 - 1 - 3 * SQUISH_CONSTANT_3D; dy_ext0 = dy0 - 1 - 3 * SQUISH_CONSTANT_3D; dz_ext0 = dz0 - 1 - 3 * SQUISH_CONSTANT_3D; xsv_ext0 = xsb + 1; ysv_ext0 = ysb + 1; zsv_ext0 = zsb + 1; //Other extra point is based on the shared axis. byte c = (byte)(aPoint & bPoint); if ((c & 0x01) != 0) { dx_ext1 = dx0 - 2 - 2 * SQUISH_CONSTANT_3D; dy_ext1 = dy0 - 2 * SQUISH_CONSTANT_3D; dz_ext1 = dz0 - 2 * SQUISH_CONSTANT_3D; xsv_ext1 = xsb + 2; ysv_ext1 = ysb; zsv_ext1 = zsb; } else if ((c & 0x02) != 0) { dx_ext1 = dx0 - 2 * SQUISH_CONSTANT_3D; dy_ext1 = dy0 - 2 - 2 * SQUISH_CONSTANT_3D; dz_ext1 = dz0 - 2 * SQUISH_CONSTANT_3D; xsv_ext1 = xsb; ysv_ext1 = ysb + 2; zsv_ext1 = zsb; } else { dx_ext1 = dx0 - 2 * SQUISH_CONSTANT_3D; dy_ext1 = dy0 - 2 * SQUISH_CONSTANT_3D; dz_ext1 = dz0 - 2 - 2 * SQUISH_CONSTANT_3D; xsv_ext1 = xsb; ysv_ext1 = ysb; zsv_ext1 = zsb + 2; } } else {//Both closest points on (0,0,0) side //One of the two extra points is (0,0,0) dx_ext0 = dx0; dy_ext0 = dy0; dz_ext0 = dz0; xsv_ext0 = xsb; ysv_ext0 = ysb; zsv_ext0 = zsb; //Other extra point is based on the omitted axis. byte c = (byte)(aPoint | bPoint); if ((c & 0x01) == 0) { dx_ext1 = dx0 + 1 - SQUISH_CONSTANT_3D; dy_ext1 = dy0 - 1 - SQUISH_CONSTANT_3D; dz_ext1 = dz0 - 1 - SQUISH_CONSTANT_3D; xsv_ext1 = xsb - 1; ysv_ext1 = ysb + 1; zsv_ext1 = zsb + 1; } else if ((c & 0x02) == 0) { dx_ext1 = dx0 - 1 - SQUISH_CONSTANT_3D; dy_ext1 = dy0 + 1 - SQUISH_CONSTANT_3D; dz_ext1 = dz0 - 1 - SQUISH_CONSTANT_3D; xsv_ext1 = xsb + 1; ysv_ext1 = ysb - 1; zsv_ext1 = zsb + 1; } else { dx_ext1 = dx0 - 1 - SQUISH_CONSTANT_3D; dy_ext1 = dy0 - 1 - SQUISH_CONSTANT_3D; dz_ext1 = dz0 + 1 - SQUISH_CONSTANT_3D; xsv_ext1 = xsb + 1; ysv_ext1 = ysb + 1; zsv_ext1 = zsb - 1; } } } else { //One point on (0,0,0) side, one point on (1,1,1) side byte c1, c2; if (aIsFurtherSide) { c1 = aPoint; c2 = bPoint; } else { c1 = bPoint; c2 = aPoint; } //One contribution is a permutation of (1,1,-1) if ((c1 & 0x01) == 0) { dx_ext0 = dx0 + 1 - SQUISH_CONSTANT_3D; dy_ext0 = dy0 - 1 - SQUISH_CONSTANT_3D; dz_ext0 = dz0 - 1 - SQUISH_CONSTANT_3D; xsv_ext0 = xsb - 1; ysv_ext0 = ysb + 1; zsv_ext0 = zsb + 1; } else if ((c1 & 0x02) == 0) { dx_ext0 = dx0 - 1 - SQUISH_CONSTANT_3D; dy_ext0 = dy0 + 1 - SQUISH_CONSTANT_3D; dz_ext0 = dz0 - 1 - SQUISH_CONSTANT_3D; xsv_ext0 = xsb + 1; ysv_ext0 = ysb - 1; zsv_ext0 = zsb + 1; } else { dx_ext0 = dx0 - 1 - SQUISH_CONSTANT_3D; dy_ext0 = dy0 - 1 - SQUISH_CONSTANT_3D; dz_ext0 = dz0 + 1 - SQUISH_CONSTANT_3D; xsv_ext0 = xsb + 1; ysv_ext0 = ysb + 1; zsv_ext0 = zsb - 1; } //One contribution is a permutation of (0,0,2) dx_ext1 = dx0 - 2 * SQUISH_CONSTANT_3D; dy_ext1 = dy0 - 2 * SQUISH_CONSTANT_3D; dz_ext1 = dz0 - 2 * SQUISH_CONSTANT_3D; xsv_ext1 = xsb; ysv_ext1 = ysb; zsv_ext1 = zsb; if ((c2 & 0x01) != 0) { dx_ext1 -= 2; xsv_ext1 += 2; } else if ((c2 & 0x02) != 0) { dy_ext1 -= 2; ysv_ext1 += 2; } else { dz_ext1 -= 2; zsv_ext1 += 2; } } //Contribution (1,0,0) double dx1 = dx0 - 1 - SQUISH_CONSTANT_3D; double dy1 = dy0 - 0 - SQUISH_CONSTANT_3D; double dz1 = dz0 - 0 - SQUISH_CONSTANT_3D; double attn1 = 2 - dx1 * dx1 - dy1 * dy1 - dz1 * dz1; if (attn1 > 0) { attn1 *= attn1; value += attn1 * attn1 * extrapolate(seed, xsb + 1, ysb + 0, zsb + 0, dx1, dy1, dz1); } //Contribution (0,1,0) double dx2 = dx0 - 0 - SQUISH_CONSTANT_3D; double dy2 = dy0 - 1 - SQUISH_CONSTANT_3D; double dz2 = dz1; double attn2 = 2 - dx2 * dx2 - dy2 * dy2 - dz2 * dz2; if (attn2 > 0) { attn2 *= attn2; value += attn2 * attn2 * extrapolate(seed, xsb + 0, ysb + 1, zsb + 0, dx2, dy2, dz2); } //Contribution (0,0,1) double dx3 = dx2; double dy3 = dy1; double dz3 = dz0 - 1 - SQUISH_CONSTANT_3D; double attn3 = 2 - dx3 * dx3 - dy3 * dy3 - dz3 * dz3; if (attn3 > 0) { attn3 *= attn3; value += attn3 * attn3 * extrapolate(seed, xsb + 0, ysb + 0, zsb + 1, dx3, dy3, dz3); } //Contribution (1,1,0) double dx4 = dx0 - 1 - 2 * SQUISH_CONSTANT_3D; double dy4 = dy0 - 1 - 2 * SQUISH_CONSTANT_3D; double dz4 = dz0 - 0 - 2 * SQUISH_CONSTANT_3D; double attn4 = 2 - dx4 * dx4 - dy4 * dy4 - dz4 * dz4; if (attn4 > 0) { attn4 *= attn4; value += attn4 * attn4 * extrapolate(seed, xsb + 1, ysb + 1, zsb + 0, dx4, dy4, dz4); } //Contribution (1,0,1) double dx5 = dx4; double dy5 = dy0 - 0 - 2 * SQUISH_CONSTANT_3D; double dz5 = dz0 - 1 - 2 * SQUISH_CONSTANT_3D; double attn5 = 2 - dx5 * dx5 - dy5 * dy5 - dz5 * dz5; if (attn5 > 0) { attn5 *= attn5; value += attn5 * attn5 * extrapolate(seed, xsb + 1, ysb + 0, zsb + 1, dx5, dy5, dz5); } //Contribution (0,1,1) double dx6 = dx0 - 0 - 2 * SQUISH_CONSTANT_3D; double dy6 = dy4; double dz6 = dz5; double attn6 = 2 - dx6 * dx6 - dy6 * dy6 - dz6 * dz6; if (attn6 > 0) { attn6 *= attn6; value += attn6 * attn6 * extrapolate(seed, xsb + 0, ysb + 1, zsb + 1, dx6, dy6, dz6); } } //First extra vertex double attn_ext0 = 2 - dx_ext0 * dx_ext0 - dy_ext0 * dy_ext0 - dz_ext0 * dz_ext0; if (attn_ext0 > 0) { attn_ext0 *= attn_ext0; value += attn_ext0 * attn_ext0 * extrapolate(seed, xsv_ext0, ysv_ext0, zsv_ext0, dx_ext0, dy_ext0, dz_ext0); } //Second extra vertex double attn_ext1 = 2 - dx_ext1 * dx_ext1 - dy_ext1 * dy_ext1 - dz_ext1 * dz_ext1; if (attn_ext1 > 0) { attn_ext1 *= attn_ext1; value += attn_ext1 * attn_ext1 * extrapolate(seed, xsv_ext1, ysv_ext1, zsv_ext1, dx_ext1, dy_ext1, dz_ext1); } return value / NORM_CONSTANT_3D; }
//2D OpenSimplex Noise. public double eval(Seed seed, double x, double y) { //Place input coordinates onto grid. double stretchOffset = (x + y) * STRETCH_CONSTANT_2D; double xs = x + stretchOffset; double ys = y + stretchOffset; //Floor to get grid coordinates of rhombus (stretched square) super-cell origin. int xsb = fastFloor(xs); int ysb = fastFloor(ys); //Skew out to get actual coordinates of rhombus origin. We'll need these later. double squishOffset = (xsb + ysb) * SQUISH_CONSTANT_2D; double xb = xsb + squishOffset; double yb = ysb + squishOffset; //Compute grid coordinates relative to rhombus origin. double xins = xs - xsb; double yins = ys - ysb; //Sum those together to get a value that determines which region we're in. double inSum = xins + yins; //Positions relative to origin point. double dx0 = x - xb; double dy0 = y - yb; //We'll be defining these inside the next block and using them afterwards. double dx_ext, dy_ext; int xsv_ext, ysv_ext; double value = 0; //Contribution (1,0) double dx1 = dx0 - 1 - SQUISH_CONSTANT_2D; double dy1 = dy0 - 0 - SQUISH_CONSTANT_2D; double attn1 = 2 - dx1 * dx1 - dy1 * dy1; if (attn1 > 0) { attn1 *= attn1; value += attn1 * attn1 * extrapolate(seed, xsb + 1, ysb + 0, dx1, dy1); } //Contribution (0,1) double dx2 = dx0 - 0 - SQUISH_CONSTANT_2D; double dy2 = dy0 - 1 - SQUISH_CONSTANT_2D; double attn2 = 2 - dx2 * dx2 - dy2 * dy2; if (attn2 > 0) { attn2 *= attn2; value += attn2 * attn2 * extrapolate(seed, xsb + 0, ysb + 1, dx2, dy2); } if (inSum <= 1) { //We're inside the triangle (2-Simplex) at (0,0) double zins = 1 - inSum; if (zins > xins || zins > yins) { //(0,0) is one of the closest two triangular vertices if (xins > yins) { xsv_ext = xsb + 1; ysv_ext = ysb - 1; dx_ext = dx0 - 1; dy_ext = dy0 + 1; } else { xsv_ext = xsb - 1; ysv_ext = ysb + 1; dx_ext = dx0 + 1; dy_ext = dy0 - 1; } } else { //(1,0) and (0,1) are the closest two vertices. xsv_ext = xsb + 1; ysv_ext = ysb + 1; dx_ext = dx0 - 1 - 2 * SQUISH_CONSTANT_2D; dy_ext = dy0 - 1 - 2 * SQUISH_CONSTANT_2D; } } else { //We're inside the triangle (2-Simplex) at (1,1) double zins = 2 - inSum; if (zins < xins || zins < yins) { //(0,0) is one of the closest two triangular vertices if (xins > yins) { xsv_ext = xsb + 2; ysv_ext = ysb + 0; dx_ext = dx0 - 2 - 2 * SQUISH_CONSTANT_2D; dy_ext = dy0 + 0 - 2 * SQUISH_CONSTANT_2D; } else { xsv_ext = xsb + 0; ysv_ext = ysb + 2; dx_ext = dx0 + 0 - 2 * SQUISH_CONSTANT_2D; dy_ext = dy0 - 2 - 2 * SQUISH_CONSTANT_2D; } } else { //(1,0) and (0,1) are the closest two vertices. dx_ext = dx0; dy_ext = dy0; xsv_ext = xsb; ysv_ext = ysb; } xsb += 1; ysb += 1; dx0 = dx0 - 1 - 2 * SQUISH_CONSTANT_2D; dy0 = dy0 - 1 - 2 * SQUISH_CONSTANT_2D; } //Contribution (0,0) or (1,1) double attn0 = 2 - dx0 * dx0 - dy0 * dy0; if (attn0 > 0) { attn0 *= attn0; value += attn0 * attn0 * extrapolate(seed, xsb, ysb, dx0, dy0); } //Extra Vertex double attn_ext = 2 - dx_ext * dx_ext - dy_ext * dy_ext; if (attn_ext > 0) { attn_ext *= attn_ext; value += attn_ext * attn_ext * extrapolate(seed, xsv_ext, ysv_ext, dx_ext, dy_ext); } return value / NORM_CONSTANT_2D; }
public IChunkGenerator CreateChunkGenerator(Seed seed) { return new ThreadedChunkGenerator(seed); }
public static double Get(Seed seed, double x, double y, double z) { const double zero = 0d; const double one = 1d; const double two = 2d; const double three = 3d; // Place input coordinates on simplectic honeycomb. var stretchOffset = (x + y + z)*StretchConstant_3D; var xs = x + stretchOffset; var ys = y + stretchOffset; var zs = z + stretchOffset; // Floor to get simplectic honeycomb coordinates of rhombohedron (stretched cube) super-cell origin. var xsFloor = Math.FastFloor(xs); var ysFloor = Math.FastFloor(ys); var zsFloor = Math.FastFloor(zs); // Skew out to get actual coordinates of rhombohedron origin. We'll need these later. var squishOffset = (xsFloor + ysFloor + zsFloor)*SquishConstant_3D; var xFloor = xsFloor + squishOffset; var yFloor = ysFloor + squishOffset; var zFloor = zsFloor + squishOffset; // Compute simplectic honeycomb coordinates relative to rhombohedral origin. var xsFrac = xs - xsFloor; var ysFrac = ys - ysFloor; var zsFrac = zs - zsFloor; // Sum those together to get a value that determines which region we're in. var fracSum = xsFrac + ysFrac + zsFrac; // Positions relative to origin point. var dx0 = x - xFloor; var dy0 = y - yFloor; var dz0 = z - zFloor; var value = zero; // Check if we're inside the tetrahedron (3-Simplex) at (0,0,0) if (fracSum <= one) { // Contribution (0,0,0) value += Gradient.Get(seed, xsFloor, ysFloor, zsFloor, dx0, dy0, dz0); // Contribution (1,0,0) var dx1 = dx0 - one - SquishConstant_3D; var dy1 = dy0 - zero - SquishConstant_3D; var dz1 = dz0 - zero - SquishConstant_3D; value += Gradient.Get(seed, xsFloor + 1, ysFloor, zsFloor, dx1, dy1, dz1); // Contribution (0,1,0) var dx2 = dx0 - zero - SquishConstant_3D; var dy2 = dy0 - one - SquishConstant_3D; var dz2 = dz1; value += Gradient.Get(seed, xsFloor, ysFloor + 1, zsFloor, dx2, dy2, dz2); // Contribution (0,0,1) var dx3 = dx2; var dy3 = dy1; var dz3 = dz0 - one - SquishConstant_3D; value += Gradient.Get(seed, xsFloor, ysFloor, zsFloor + 1, dx3, dy3, dz3); } // Check if we're inside the tetrahedron (3-Simplex) at (1,1,1) else if (fracSum >= two) { // Contribution (1,1,0) var dx3 = dx0 - one - two*SquishConstant_3D; var dy3 = dy0 - one - two*SquishConstant_3D; var dz3 = dz0 - zero - two*SquishConstant_3D; value += Gradient.Get(seed, xsFloor + 1, ysFloor + 1, zsFloor, dx3, dy3, dz3); // Contribution (1,0,1) var dx2 = dx3; var dy2 = dy0 - zero - two*SquishConstant_3D; var dz2 = dz0 - one - two*SquishConstant_3D; value += Gradient.Get(seed, xsFloor + 1, ysFloor, zsFloor + 1, dx2, dy2, dz2); // Contribution (0,1,1) var dx1 = dx0 - zero - two*SquishConstant_3D; var dy1 = dy3; var dz1 = dz2; value += Gradient.Get(seed, xsFloor, ysFloor + 1, zsFloor + 1, dx1, dy1, dz1); // Contribution (1,1,1) dx0 = dx0 - one - three*SquishConstant_3D; dy0 = dy0 - one - three*SquishConstant_3D; dz0 = dz0 - one - three*SquishConstant_3D; value += Gradient.Get(seed, xsFloor + 1, ysFloor + 1, zsFloor + 1, dx0, dy0, dz0); } // Check if we're inside the octahedron (Rectified 3-Simplex) in between. else { // Contribution (1,0,0) var dx1 = dx0 - one - SquishConstant_3D; var dy1 = dy0 - zero - SquishConstant_3D; var dz1 = dz0 - zero - SquishConstant_3D; value += Gradient.Get(seed, xsFloor + 1, ysFloor, zsFloor, dx1, dy1, dz1); // Contribution (0,1,0) var dx2 = dx0 - zero - SquishConstant_3D; var dy2 = dy0 - one - SquishConstant_3D; var dz2 = dz1; value += Gradient.Get(seed, xsFloor, ysFloor + 1, zsFloor, dx2, dy2, dz2); // Contribution (0,0,1) var dx3 = dx2; var dy3 = dy1; var dz3 = dz0 - one - SquishConstant_3D; value += Gradient.Get(seed, xsFloor, ysFloor, zsFloor + 1, dx3, dy3, dz3); // Contribution (1,1,0) var dx4 = dx0 - one - two*SquishConstant_3D; var dy4 = dy0 - one - two*SquishConstant_3D; var dz4 = dz0 - zero - two*SquishConstant_3D; value += Gradient.Get(seed, xsFloor + 1, ysFloor + 1, zsFloor, dx4, dy4, dz4); // Contribution (1,0,1) var dx5 = dx4; var dy5 = dy0 - zero - two*SquishConstant_3D; var dz5 = dz0 - one - two*SquishConstant_3D; value += Gradient.Get(seed, xsFloor + 1, ysFloor, zsFloor + 1, dx5, dy5, dz5); // Contribution (0,1,1) var dx6 = dx0 - zero - two*SquishConstant_3D; var dy6 = dy4; var dz6 = dz5; value += Gradient.Get(seed, xsFloor, ysFloor + 1, zsFloor + 1, dx6, dy6, dz6); } return value/NormConstant_3D; }
private const double StretchConstant_4D = -0.138196601125011; //(1/Math.Sqrt(4+1)-1)/4; #endregion Fields #region Methods public static double Get(Seed seed, double x) { throw new NotImplementedException(); }
private void InitializeChunkGenerators(uint chunkGeneratorCount) { _chunkGeneratorCount = chunkGeneratorCount; _nextChunkGeneratorIndex = 0; _chunkGenerators = new IChunkGenerator[_chunkGeneratorCount]; var seed = new Seed(CryptoRand.NextInt64()); for (var i = 0; i < _chunkGeneratorCount; ++i) { _chunkGenerators[i] = _chunkFactory.CreateChunkGenerator(seed); } }
public static double Get(Seed seed, double x, double y, double z) { // Find unit grid cell containing point var X = FastFloor(x); var Y = FastFloor(y); var Z = FastFloor(z); // Get relative xyz coordinates of point within that cell x -= X; y -= Y; z -= Z; // Wrap the integer cells at 255 (smaller integer period can be introduced here) X &= 255; Y &= 255; Z &= 255; // Calculate a set of eight hashed gradient indices var gi000 = p[X + p[Y + p[Z]]]%12; var gi001 = p[X + p[Y + p[Z + 1]]]%12; var gi010 = p[X + p[Y + 1 + p[Z]]]%12; var gi011 = p[X + p[Y + 1 + p[Z + 1]]]%12; var gi100 = p[X + 1 + p[Y + p[Z]]]%12; var gi101 = p[X + 1 + p[Y + p[Z + 1]]]%12; var gi110 = p[X + 1 + p[Y + 1 + p[Z]]]%12; var gi111 = p[X + 1 + p[Y + 1 + p[Z + 1]]]%12; // The gradients of each corner are now: // g000 = grad3[gi000]; // g001 = grad3[gi001]; // g010 = grad3[gi010]; // g011 = grad3[gi011]; // g100 = grad3[gi100]; // g101 = grad3[gi101]; // g110 = grad3[gi110]; // g111 = grad3[gi111]; // Calculate noise contributions from each of the eight corners var n000 = Dot(Grad3[gi000], x, y, z); var n100 = Dot(Grad3[gi100], x - 1, y, z); var n010 = Dot(Grad3[gi010], x, y - 1, z); var n110 = Dot(Grad3[gi110], x - 1, y - 1, z); var n001 = Dot(Grad3[gi001], x, y, z - 1); var n101 = Dot(Grad3[gi101], x - 1, y, z - 1); var n011 = Dot(Grad3[gi011], x, y - 1, z - 1); var n111 = Dot(Grad3[gi111], x - 1, y - 1, z - 1); // Compute the fade curve value for each of x, y, z var u = Fade(x); var v = Fade(y); var w = Fade(z); // Interpolate along x the contributions from each of the corners var nx00 = Lerp(n000, n100, u); var nx01 = Lerp(n001, n101, u); var nx10 = Lerp(n010, n110, u); var nx11 = Lerp(n011, n111, u); // Interpolate the four results along y var nxy0 = Lerp(nx00, nx10, v); var nxy1 = Lerp(nx01, nx11, v); // Interpolate the two last results along z var nxyz = Lerp(nxy0, nxy1, w); return nxyz; }