public CrossOver(List <Individu> individu, double crossrate, int popSize) { double offspring = crossrate * (double)popSize; offspring = Math.Floor(offspring); SqliteDatabase db = new SqliteDatabase(); DataTable dt = db.query("SELECT * FROM gejala"); rule = new List <Gejala>(); foreach (DataRow row in dt.Rows) { Gejala g = new Gejala(); double[] p = new double[3]; g.SetKodeGejala(Convert.ToString(row["kode_gejala"])); g.SetNamaGejala(Convert.ToString(row["nama_gejala"])); p[0] = Convert.ToDouble(row["pneumonia"]); p[1] = Convert.ToDouble(row["bronkitis"]); p[2] = Convert.ToDouble(row["urti"]); g.SetPenyakit(p); rule.Add(g); } Density de = new Density(rule); de.setMinMax(-0.25, 0.25); Individu alpha = new Individu(de.GetDensity()); crossover = new List <Individu>(); int[] randomIndividu = generateNumber(individu.Count); int offset = 0; while (crossover.Count < offspring) { List <Gejala> c = new List <Gejala>(); c = Cross(individu[offset], individu[offset + 1], alpha); Individu v = new Individu(c); crossover.Add(v); if (crossover.Count < offspring) { c = Cross(individu[offset + 1], individu[offset], alpha); Individu v2 = new Individu(c); crossover.Add(v2); offset = offset + 2; } } }
public CrossOver(List<Individu> individu, double crossrate, int popSize) { double offspring = crossrate * (double) popSize; offspring = Math.Floor(offspring); SqliteDatabase db = new SqliteDatabase(); DataTable dt = db.query("SELECT * FROM gejala"); rule = new List<Gejala>(); foreach (DataRow row in dt.Rows) { Gejala g = new Gejala(); double[] p = new double[3]; g.SetKodeGejala(Convert.ToString(row["kode_gejala"])); g.SetNamaGejala(Convert.ToString(row["nama_gejala"])); p[0] = Convert.ToDouble(row["pneumonia"]); p[1] = Convert.ToDouble(row["bronkitis"]); p[2] = Convert.ToDouble(row["urti"]); g.SetPenyakit(p); rule.Add(g); } Density de = new Density(rule); de.setMinMax(-0.25, 0.25); Individu alpha = new Individu(de.GetDensity()); crossover = new List<Individu>(); int[] randomIndividu = generateNumber(individu.Count); int offset = 0; while (crossover.Count < offspring) { List<Gejala> c = new List<Gejala>(); c = Cross(individu[offset], individu[offset + 1], alpha); Individu v = new Individu(c); crossover.Add(v); if (crossover.Count < offspring) { c = Cross(individu[offset + 1], individu[offset], alpha); Individu v2 = new Individu(c); crossover.Add(v2); offset = offset + 2; } } }
public Form1() { InitializeComponent(); db = new SqliteDatabase(); DataTable dt = new DataTable(); dt = db.query("SELECT * FROM gejala"); List<Gejala> rule = new List<Gejala>(); double[,] cek = { {0.534, 0.875, 0.530}, {0.238, 0.374, 0.573}, {0.468, 0, 0}, {0.375, 0.583, 0.384}, {0, 0.347, 0.474}, {0.472, 0.582, 0}, {0, 0.285, 0.372}, {0, 0.514, 0.572}, {0.372, 0.512, 0}, {0.582, 0, 0}, {0, 0.352, 0}, {0, 0, 0.235}, {0.682, 0.235, 0}, {0, 0.523, 0}, {0.5325, 0, 0}, {0.5244, 0.483, 0}, {0, 0.602, 0.662} }; List<double[]> c*k = new List<double[]>(); for (int z = 0; z < cek.GetLength(0); z++) { double[] fak = new double[3]; fak[0] = cek[z, 0]; fak[1] = cek[z, 1]; fak[2] = cek[z, 2]; c*k.Add(fak); } foreach (DataRow row in dt.Rows) { Gejala g = new Gejala(); double[] p = new double[3]; g.SetKodeGejala(Convert.ToString(row["kode_gejala"])); g.SetNamaGejala(Convert.ToString(row["nama_gejala"])); p[0] = Convert.ToDouble(row["pneumonia"]); p[1] = Convert.ToDouble(row["bronkitis"]); p[2] = Convert.ToDouble(row["urti"]); g.SetPenyakit(p); rule.Add(g); } List<Gejala> pesatu = new List<Gejala>(); for (int i = 0; i < rule.Count; i++) { Gejala h = new Gejala(); h.SetKodeGejala(rule[i].GetKodeGejala()); h.SetPenyakit(c*k[i]); pesatu.Add(h); } de = new Density(rule); p1 = new Individu(pesatu); p2 = new Individu(de.GetDensity()); }
public Form1() { InitializeComponent(); db = new SqliteDatabase(); DataTable dt = new DataTable(); dt = db.query("SELECT * FROM gejala"); List <Gejala> rule = new List <Gejala>(); double[,] cek = { { 0.534, 0.875, 0.530 }, { 0.238, 0.374, 0.573 }, { 0.468, 0, 0 }, { 0.375, 0.583, 0.384 }, { 0, 0.347, 0.474 }, { 0.472, 0.582, 0 }, { 0, 0.285, 0.372 }, { 0, 0.514, 0.572 }, { 0.372, 0.512, 0 }, { 0.582, 0, 0 }, { 0, 0.352, 0 }, { 0, 0, 0.235 }, { 0.682, 0.235, 0 }, { 0, 0.523, 0 }, { 0.5325, 0, 0 }, { 0.5244, 0.483, 0 }, { 0, 0.602, 0.662 } }; List <double[]> c*k = new List <double[]>(); for (int z = 0; z < cek.GetLength(0); z++) { double[] fak = new double[3]; fak[0] = cek[z, 0]; fak[1] = cek[z, 1]; fak[2] = cek[z, 2]; c*k.Add(fak); } foreach (DataRow row in dt.Rows) { Gejala g = new Gejala(); double[] p = new double[3]; g.SetKodeGejala(Convert.ToString(row["kode_gejala"])); g.SetNamaGejala(Convert.ToString(row["nama_gejala"])); p[0] = Convert.ToDouble(row["pneumonia"]); p[1] = Convert.ToDouble(row["bronkitis"]); p[2] = Convert.ToDouble(row["urti"]); g.SetPenyakit(p); rule.Add(g); } List <Gejala> pesatu = new List <Gejala>(); for (int i = 0; i < rule.Count; i++) { Gejala h = new Gejala(); h.SetKodeGejala(rule[i].GetKodeGejala()); h.SetPenyakit(c*k[i]); pesatu.Add(h); } de = new Density(rule); p1 = new Individu(pesatu); p2 = new Individu(de.GetDensity()); }
private void prosesBtn_Click(object sender, EventArgs e) { beliefDgv.Rows.Clear(); individuDgv.Rows.Clear(); int popSize = Convert.ToInt32(popSizeBox.Text); int iterasi = Convert.ToInt32(iterationBox.Text); double cr = Convert.ToDouble(crBox.Text); double mr = Convert.ToDouble(mrBox.Text); DataTable dt = db.query("SELECT * FROM gejala"); rule = new List<Gejala>(); foreach (DataRow row in dt.Rows) { Gejala g = new Gejala(); double[] p = new double[3]; g.SetKodeGejala(Convert.ToString(row["kode_gejala"])); g.SetNamaGejala(Convert.ToString(row["nama_gejala"])); p[0] = Convert.ToDouble(row["pneumonia"]); p[1] = Convert.ToDouble(row["bronkitis"]); p[2] = Convert.ToDouble(row["urti"]); g.SetPenyakit(p); rule.Add(g); } DataTable ks = db.query("SELECT * FROM kasus"); List<Kasus> listKasus = new List<Kasus>(); foreach (DataRow r in ks.Rows) { string s = Convert.ToString(r["gejala"]); string[] gejala = Array.ConvertAll(s.Split(','), ge => ge.Trim()); string d = Convert.ToString(r["diagnosa"]); string[] diagnosa = Array.ConvertAll(d.Split(','), di => di.Trim()); Kasus k = new Kasus(); k.SetGejala(gejala); k.SetDiagnosa(diagnosa); listKasus.Add(k); } de = new Density(rule); iBaru = new List<Individu>(); List<int> index = new List<int>(); for (int iter = 0; iter < iterasi; iter++) { // Init List<Individu> P; Console.WriteLine("Iterasi ke - " + (iter + 1) + " ---------------------------------"); if (iter == 0) { P = new List<Individu>(); Console.WriteLine("-- Dempster Shafer Individu --"); for (int i = 0; i < popSize; i++) { Console.WriteLine(">> Individu ke - " + (i + 1)); Individu inv = new Individu(de.GetDensity()); DempsterShafer ds = new DempsterShafer(inv, listKasus); inv.SetFitness(ds.GetFitness()); P.Add(inv); } } else { P = iBaru; } List<Individu> C = new List<Individu>(); CrossOver co = new CrossOver(P, cr, popSize); C = co.GetCrossover(); Console.WriteLine("-- Dempster Shafer Crossover --"); for (int j = 0; j < C.Count; j++) { Console.WriteLine(">> Crossover ke - " + (j + 1)); DempsterShafer ds = new DempsterShafer(C[j], listKasus); C[j].SetFitness(ds.GetFitness()); } double minimum = C[0].GetFitness(); double maximum = 0; for (int k = 0; k < C.Count; k++) { if (minimum > C[k].GetFitness()) minimum = C[k].GetFitness(); if (maximum < C[k].GetFitness()) maximum = C[k].GetFitness(); } double maxmin = maximum - minimum; Console.WriteLine("-- Mutasi, Dempster Shafer Mutasi --"); Mutasi mts = new Mutasi(P, mr, popSize, maxmin, rule); C.Add(mts.GetMutasi()); DempsterShafer dss = new DempsterShafer(C[C.Count - 1], listKasus); C[C.Count - 1].SetFitness(dss.GetFitness()); Console.WriteLine("-- Nilai Fitness Akhir --"); Selection slct = new Selection(P, C, popSize); iBaru = slct.GetITerbaik(); index = slct.GetIndex(); } PopulateDgv(rule, iBaru[0]); double akurasi = iBaru[0].GetFitness() * 100; labelAkurasi.Text = akurasi.ToString() + " %"; for (int i = 0; i < iBaru.Count; i++) { int idIndividu = index[i]+1; string kode; if ( idIndividu > popSize) { idIndividu -= popSize; kode = "C" + idIndividu; } else { kode = "P" + idIndividu; } this.individuDgv.Rows.Add(kode, iBaru[i].GetFitness()); } MessageBox.Show("Proses Perhitungan Selesai"); }
private void prosesBtn_Click(object sender, EventArgs e) { beliefDgv.Rows.Clear(); individuDgv.Rows.Clear(); int popSize = Convert.ToInt32(popSizeBox.Text); int iterasi = Convert.ToInt32(iterationBox.Text); double cr = Convert.ToDouble(crBox.Text); double mr = Convert.ToDouble(mrBox.Text); DataTable dt = db.query("SELECT * FROM gejala"); rule = new List <Gejala>(); foreach (DataRow row in dt.Rows) { Gejala g = new Gejala(); double[] p = new double[3]; g.SetKodeGejala(Convert.ToString(row["kode_gejala"])); g.SetNamaGejala(Convert.ToString(row["nama_gejala"])); p[0] = Convert.ToDouble(row["pneumonia"]); p[1] = Convert.ToDouble(row["bronkitis"]); p[2] = Convert.ToDouble(row["urti"]); g.SetPenyakit(p); rule.Add(g); } DataTable ks = db.query("SELECT * FROM kasus"); List <Kasus> listKasus = new List <Kasus>(); foreach (DataRow r in ks.Rows) { string s = Convert.ToString(r["gejala"]); string[] gejala = Array.ConvertAll(s.Split(','), ge => ge.Trim()); string d = Convert.ToString(r["diagnosa"]); string[] diagnosa = Array.ConvertAll(d.Split(','), di => di.Trim()); Kasus k = new Kasus(); k.SetGejala(gejala); k.SetDiagnosa(diagnosa); listKasus.Add(k); } de = new Density(rule); iBaru = new List <Individu>(); List <int> index = new List <int>(); for (int iter = 0; iter < iterasi; iter++) { // Init List <Individu> P; Console.WriteLine("Iterasi ke - " + (iter + 1) + " ---------------------------------"); if (iter == 0) { P = new List <Individu>(); Console.WriteLine("-- Dempster Shafer Individu --"); for (int i = 0; i < popSize; i++) { Console.WriteLine(">> Individu ke - " + (i + 1)); Individu inv = new Individu(de.GetDensity()); DempsterShafer ds = new DempsterShafer(inv, listKasus); inv.SetFitness(ds.GetFitness()); P.Add(inv); } } else { P = iBaru; } List <Individu> C = new List <Individu>(); CrossOver co = new CrossOver(P, cr, popSize); C = co.GetCrossover(); Console.WriteLine("-- Dempster Shafer Crossover --"); for (int j = 0; j < C.Count; j++) { Console.WriteLine(">> Crossover ke - " + (j + 1)); DempsterShafer ds = new DempsterShafer(C[j], listKasus); C[j].SetFitness(ds.GetFitness()); } double minimum = C[0].GetFitness(); double maximum = 0; for (int k = 0; k < C.Count; k++) { if (minimum > C[k].GetFitness()) { minimum = C[k].GetFitness(); } if (maximum < C[k].GetFitness()) { maximum = C[k].GetFitness(); } } double maxmin = maximum - minimum; Console.WriteLine("-- Mutasi, Dempster Shafer Mutasi --"); Mutasi mts = new Mutasi(P, mr, popSize, maxmin, rule); C.Add(mts.GetMutasi()); DempsterShafer dss = new DempsterShafer(C[C.Count - 1], listKasus); C[C.Count - 1].SetFitness(dss.GetFitness()); Console.WriteLine("-- Nilai Fitness Akhir --"); Selection slct = new Selection(P, C, popSize); iBaru = slct.GetITerbaik(); index = slct.GetIndex(); } PopulateDgv(rule, iBaru[0]); double akurasi = iBaru[0].GetFitness() * 100; labelAkurasi.Text = akurasi.ToString() + " %"; for (int i = 0; i < iBaru.Count; i++) { int idIndividu = index[i] + 1; string kode; if (idIndividu > popSize) { idIndividu -= popSize; kode = "C" + idIndividu; } else { kode = "P" + idIndividu; } this.individuDgv.Rows.Add(kode, iBaru[i].GetFitness()); } MessageBox.Show("Proses Perhitungan Selesai"); }