public static Tile Reg_Const() { return(new Tile(typeof(AssignmentNode), new[] { makeTile <RegisterNode> (), makeTile <ConstantNode <long> > () }, (regNode, node) => { var root = node as AssignmentNode; var target = root.Target as RegisterNode; var valNode = root.Source as ConstantNode <long>; if (valNode.Value == 0L) { return new [] { InstructionFactory.Xor(target, target), InstructionFactory.Move(regNode, target) }; } else { return new [] { InstructionFactory.Move(target, valNode), InstructionFactory.Move(regNode, target) }; } } )); }
public static Tile ConstReg() { return(makeBinopTile <LogAndOperatorNode, ConstantNode <long>, RegisterNode> ( (regNode, left, right) => left.Value == 0L ? new[] { InstructionFactory.Xor(regNode, regNode) } // l == 0 -> all = 0 : new[] { InstructionFactory.Move(regNode, right) } // l != 0 -> all = r )); }
public static Tile RegConst() { return(makeBinopTile <LogAndOperatorNode, RegisterNode, ConstantNode <long> > ( (regNode, left, right) => right.Value == 0L ? new[] { InstructionFactory.Xor(regNode, regNode) } // r == 0 -> all = 0 : new[] { InstructionFactory.Move(regNode, left) } // r != 0 -> all = l )); }
// -x = 0-x public static Tile Minus_Reg() { return(makeUnopTile <UnaryMinusOperatorNode, RegisterNode> ( (regNode, root, left) => new [] { InstructionFactory.Xor(regNode, regNode), InstructionFactory.Sub(regNode, left), } )); }
public static Tile ConstReg <T>() { return(makeBinopTile <ModOperatorNode, ConstantNode <T>, RegisterNode> ( (regNode, left, right) => new[] { InstructionFactory.Xor(Target.RDX, Target.RDX), // RDX = 0 InstructionFactory.Move(Target.RAX, left), // RDX:RAX = left InstructionFactory.Div(right), // RDX = left % right InstructionFactory.Move(regNode, Target.RDX) // result = RDX } )); }
public static Tile RegReg() { return(makeBinopTile <DivOperatorNode, RegisterNode, RegisterNode> ( (regNode, left, right) => new[] { InstructionFactory.Xor(Target.RDX, Target.RDX), // RDX = 0 InstructionFactory.Move(Target.RAX, left), // RDX:RAX = left InstructionFactory.Div(right), // RAX = left / right InstructionFactory.Move(regNode, Target.RAX) // result = RAX } )); }
public static Tile RegReg() { // l = 0 -> first instruction sets reg to 0 // r = 0 but l > 0 -> fourth instruction sets reg to 0 // l > 0 and r > 0 -> first instruction sets reg = l > 0 and nothing changes return(makeBinopTile <LogAndOperatorNode, RegisterNode, RegisterNode> ( (regNode, left, right) => new[] { InstructionFactory.Move(regNode, left), // reg = left InstructionFactory.Xor(left, left), // left = 0 InstructionFactory.Cmp(right, left), // if right == 0 InstructionFactory.Cmove(regNode, left) // then reg = 0 } )); }
static IEnumerable <Instruction> EffectiveMultiplication(RegisterNode dst, RegisterNode mul_reg, ConstantNode <long> mul_val) { switch (mul_val.Value) { case 2L: case 4L: case 8L: return(new [] { InstructionFactory.Lea_Mul(dst, mul_reg, mul_val) }); case 3L: case 5L: case 9L: var tmp_val = new ConstantNode <long> (mul_val.Value - 1L); return(new [] { InstructionFactory.Lea_MulAdd(dst, mul_reg, tmp_val, mul_reg) }); case 1L: return(new [] { InstructionFactory.Move(dst, mul_reg) }); case 0L: return(new [] { InstructionFactory.Xor(dst, dst) }); default: // dst = mul_reg * mul_val return(new [] { InstructionFactory.Move(Target.RAX, mul_val), // RAX = mul_val InstructionFactory.Mul(mul_reg), // RDX:RAX = mul_reg * mul_val InstructionFactory.Move(dst, Target.RAX) // dst = RAX }); } }