protected void OnMouseUp(object sender, MouseEventArgs e) { if (e.Button == MouseButtons.Left) { choosedinputNeuron = null; choosedNeuron = null; net.SetSelection(net.GetNeuronsByRectangle(currentRect)); selectionRectangle = false; currentRect = new Rectangle(); Refresh(); } mStatus.UpEvent(e); }
protected void OnMouseDown(object sender, MouseEventArgs e) { mStatus.DownEvent(e); ((Control)sender).Focus(); if (e.Button == MouseButtons.Left) { if ((choosedinputNeuron = GetinputByPosition(e.Location)) == null) { choosedNeuron = GetNeuronByPosition(e.Location); } currentRect.Location = new Point(e.X, e.Y); selectionRectangle = true; } }
protected void OnMouseDoubleClick(object sender, MouseEventArgs e) { if (e.Button == MouseButtons.Left) { if ((choosedinputNeuron = GetinputByPosition(e.Location)) != null) { NeuroninputInformation dlg = new NeuroninputInformation(choosedinputNeuron); dlg.ShowDialog(); Refresh(); } else if ((choosedNeuron = GetNeuronByPosition(e.Location)) != null) { NeuronInformation dlg = new NeuronInformation(choosedNeuron); dlg.ShowDialog(); } } }
public NeuroninputInformation(NeuronInput ninput) { InitializeComponent(); neuroninput = ninput; inputValueText.Text = neuroninput.value.ToString("0.00"); }
public Sinaps(NeuronInput input) { frominput = input; value = ((float)rand.Next(interval.X, interval.Y)) / multiplier; // value = 0.2f; }
public Sinaps(NeuronInput input, Neuron neuron) { fromNeuron = neuron; frominput = input; value = ((float)rand.Next(interval.X, interval.Y)) / multiplier; }
private NeuronNet AcceptJson(Root2 root2) { NeuronNet net = new NeuronNet(); for (int i = 0; i < root2.inputss.Count; i++) { PointF pointF = new PointF(); pointF.X = (float)root2.inputss[i].Position.X; pointF.Y = (float)root2.inputss[i].Position.Y; NeuronInput neuron = new NeuronInput((float)root2.inputss[i].value, root2.inputss[i].Name, pointF); neuron.positionChanged = root2.inputss[i].positionChanged; neuron.wasPainted = root2.inputss[i].wasPainted; net.inputss.Add(neuron); } for (int i = 0; i < root2.NeuronGroups.Count; i++) { NeuronGroup neurongroup = new NeuronGroup(); neurongroup.Neurons = root2.NeuronGroups[i].Neurons; neurongroup.SecondActivate = root2.NeuronGroups[i].SecondActivate; neurongroup.SumForSoftMax = (float)root2.NeuronGroups[i].SumForSoftMax; neurongroup.allNeuronsWasPainted = root2.NeuronGroups[i].allNeuronsWasPainted; net.NeuronGroups.Add(neurongroup); } for (int i = 0; i < root2.studyPairss.Count; i++) { StudyPair studyPair = new StudyPair(); for (int j = 0; j < root2.studyPairss[i].inputs.Count; j++) { studyPair.inputs.Add((float)root2.studyPairss[i].inputs[j]); } for (int j = 0; j < root2.studyPairss[i].quits.Count; j++) { studyPair.quits.Add((float)root2.studyPairss[i].quits[j]); } for (int j = 0; j < root2.studyPairss[i].realQuits.Count; j++) { studyPair.realQuits.Add((float)root2.studyPairss[i].realQuits[j]); } net.studyPairss.Add(studyPair); } net.E = (float)root2.E; net.moment = (float)root2.moment; for (int i = 0; i < root2.errors.Count; i++) { PointF pointF = new PointF(); pointF.X = (float)root2.errors[i].X; pointF.Y = (float)root2.errors[i].Y; net.errors.Add(pointF); } for (int i = 0; i < root2.normalizedErrors.Count; i++) { PointF pointF = new PointF(); pointF.X = (float)root2.normalizedErrors[i].X; pointF.Y = (float)root2.normalizedErrors[i].Y; net.normalizedErrors.Add(pointF); } net.EraCount = root2.EraCount; net.currentSelection = new NeuronGroup(0); net.recognitionResults = new List <RecognitionResult>(); net.StudyPairsLoaded = root2.StudyPairsLoaded; net.InputsSum = (float)root2.InputsSum; net.allInputsWasPainted = root2.allInputsWasPainted; net.minError = (float)root2.minError; net.NormalizeOutputValue = (float)root2.NormalizeOutputValue; net.biasX = (float[])root2.biasX; net.biasY = (float[])root2.biasY; net.scaleX = (float[])root2.scaleX; net.scaleY = (float[])root2.scaleY; net.StudyLimit = (float)root2.StudyLimit; net.AccessChangeNet = root2.AccessChangeNet; return(net); }