private void btnUse_Click(object sender, EventArgs e) { int countInputNeurons = dbHandler.SelectCountInputParametersInTask(lbTaskSelected.Text); int countOutputNeurons = 1; ActivateFunction af = LibraryOfActivateFunctions. GetActivateFunction(dbHandler.SelectActivateFunctionTypeByNeuroNet(lbNetSelected.Text), LibraryOfActivateFunctions.GetterParameter.TypeOfActivateFunctionName); List <double> valuesOfParametersAF = dbHandler.SelectValuesOfParametersOfAF(lbNetSelected.Text); int k = 0; foreach (double item in valuesOfParametersAF) { af.SetValueOfParameter(k, item); k++; } int countNeurons = dbHandler.SelectCountNeuronsInNet(lbNetSelected.Text); bool[,] connections = new bool[countNeurons, countNeurons]; double[,] weights = new double[countNeurons, countNeurons]; List <Tuple <int, int, double> > ls = dbHandler.SelectLearnedTopology(lbNetSelected.Text, lbSelSelected.Text, LearningAlgorithmsLibrary.GetNameOfTypeOfAlgoritm(lbLASelected.Text)); for (int i = 0; i < countNeurons; i++) { for (int j = 0; j < countNeurons; j++) { connections[i, j] = false; weights[i, j] = 0.0; } } foreach (Tuple <int, int, double> item in ls) { connections[item.Item2, item.Item1] = true; weights[item.Item2, item.Item1] = item.Item3; } int[] neuronsInLayers = dbHandler.SelectNeuronsInLayers(lbNetSelected.Text); NeuroNet net = new NeuroNet(countInputNeurons, countOutputNeurons, neuronsInLayers, connections, weights, af); NeuroNetSolvingWindow solvingWnd = new NeuroNetSolvingWindow(net); solvingWnd.Show(); }
private void btnUse_Click(object sender, EventArgs e) { int countInputNeurons = dbHandler.SelectCountInputParametersInTask(lbTaskSelected.Text); int countOutputNeurons = 1; ActivateFunction af = LibraryOfActivateFunctions. GetActivateFunction(dbHandler.SelectActivateFunctionTypeByNeuroNet(lbNetSelected.Text), LibraryOfActivateFunctions.GetterParameter.TypeOfActivateFunctionName); List<double> valuesOfParametersAF = dbHandler.SelectValuesOfParametersOfAF(lbNetSelected.Text); int k = 0; foreach (double item in valuesOfParametersAF) { af.SetValueOfParameter(k, item); k++; } int countNeurons = dbHandler.SelectCountNeuronsInNet(lbNetSelected.Text); bool[,] connections = new bool[countNeurons, countNeurons]; double[,] weights = new double[countNeurons, countNeurons]; List<Tuple<int, int, double>> ls = dbHandler.SelectLearnedTopology(lbNetSelected.Text, lbSelSelected.Text, LearningAlgorithmsLibrary.GetNameOfTypeOfAlgoritm(lbLASelected.Text)); for (int i = 0; i < countNeurons; i++) { for (int j = 0; j < countNeurons; j++) { connections[i, j] = false; weights[i, j] = 0.0; } } foreach (Tuple<int, int, double> item in ls) { connections[item.Item2, item.Item1] = true; weights[item.Item2, item.Item1] = item.Item3; } int[] neuronsInLayers = dbHandler.SelectNeuronsInLayers(lbNetSelected.Text); NeuroNet net = new NeuroNet(countInputNeurons, countOutputNeurons, neuronsInLayers, connections, weights, af); NeuroNetSolvingWindow solvingWnd = new NeuroNetSolvingWindow(net); solvingWnd.Show(); }